Potentially pathogenic genera of free-living amoebae coexisting in a thermal spring.

Exp Parasitol

Departamento de Ciencias Agronómicas y Veterinarias, Mexico; Programa de Doctorado en Ciencias en Biotecnología, Mexico. Electronic address:

Published: December 2018

Little is known about the prevalence of Balamuthia mandrillaris within the environment due to its difficult isolation, but once an axenic culture is established, it is relatively easy to maintain. As most of the time researchers are interested mainly in isolating B. mandrillaris from environmental samples, the flora that accompanies it becomes second in importance. Therefore, this study aimed to determine which potentially pathogenic free-living amoebae, in addition to B. mandrillaris, could be found co-inhabiting a source of natural thermal water called "Agua Caliente" (Mexico), where this amoeba has previously been detected twice by molecular methods. A third sampling from this same source was carried out to try to isolate B. mandrillaris and other free-living amoebae using 37 and 45 °C as isolation temperatures. For PCR techniques, specific primers were used for B. mandrillaris, Naegleria fowleri, and Acanthamoeba species, plus a universal primer set for the eukaryotic 18S SSU rRNA gene for other isolated amoebae. PCR products were sequenced for final identification. 42 strains of the primary isolate were obtained, but only 34 could be kept in culture. Of them, 23 strains were identified as Naegleria lovaniensis, eight strains as Acanthamoeba jacobsi, two strains as Stenamoeba sp. and only one was identified as Vermamoeba vermiformis. The isolation of B. mandrillaris was once again not successful, but the presence of potentially pathogenic and nonpathogenic free-living amoebae is reported for the first time in this type of water in Mexico thanks to molecular methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2018.10.006DOI Listing

Publication Analysis

Top Keywords

free-living amoebae
16
mandrillaris
6
amoebae
5
pathogenic genera
4
free-living
4
genera free-living
4
amoebae coexisting
4
coexisting thermal
4
thermal spring
4
spring prevalence
4

Similar Publications

Chlorine disinfectant significantly changed microfauna habitat, community structure, and colonization mode in wastewater treatment plants.

Appl Environ Microbiol

December 2024

Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.

Unlabelled: During the coronavirus disease 2019 epidemic, excessive chlorine disinfectants have been used to block the spread of severe acute respiratory syndrome-coronavirus 2, resulting in large amounts of residual disinfectants entering wastewater treatment plants (WWTPs) through sewage systems. So far, no relevant research has been conducted on the impact of chlorine disinfectants on microfauna, an important microbial component in activated sludge treatment systems. This study comprehensively investigated the changes in microfauna habitat, community structure, and colonization mode under the chlorine stress by combining the full-scale WWTP survey and laboratory-scale sequencing batch reactor experiments.

View Article and Find Full Text PDF

Naegleria fowleri, is the causative agent of Primary Amoebic Meningoencephalitis (PAM), a lethal acute brain inflammation with high mortality. The virulent and reproductively active trophozoite stage of N. fowleri migrates to central nervous system (CNS) by entering through nasal passage and causes severe neural infection, brain disease and inflammation with high mortality.

View Article and Find Full Text PDF

Free-living amoebae (FLA) are described as environmental reservoirs for some bacteria able to resist their phagocytosis. In the environment, the fate of Mycobacterium bovis (Mbo) and Mycobacterium avium subsp. paratuberculosis (Map), responsible for bovine tuberculosis and paratuberculosis respectively, remains poorly understood and is considered potentially problematic in the eradication and control of these diseases.

View Article and Find Full Text PDF

Interactions of the emerging fungus with reveal phenotypic changes with direct implications on the response to stress and virulence.

Microbiol Spectr

December 2024

Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.

Unlabelled: is an emerging fungal pathogen notable for its resistance to multiple antifungals and ability to survive in various environments. Understanding the interactions between and environmental protozoa, such as could provide insights into fungal adaptability and pathogenicity. Two isolates (MMC1 and MMC2) were co-cultured with to examine interaction dynamics, survival, stress responses, growth, virulence, biofilm formation, and antifungal susceptibility.

View Article and Find Full Text PDF

The fact that free-living amoebae of the genus Acanthamoeba can live in many different environments causes these protozoa to have different interactions with other microorganisms. Investigation of Acanthamoeba-pathogenic bacteria interaction is important for the discovery of new antibacterial agents that can be used against pathogenic bacteria. In this study, it was aimed to investigate the antibacterial effect of cell-free supernatants obtained from Acanthamoeba against some pathogenic bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!