A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Control Interlayer Stacking and Chemical Stability of Two-Dimensional Covalent Organic Frameworks via Steric Tuning. | LitMetric

Control Interlayer Stacking and Chemical Stability of Two-Dimensional Covalent Organic Frameworks via Steric Tuning.

J Am Chem Soc

School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University, Shanghai 200240 , China.

Published: November 2018

Layer stacking and chemical stability are crucial for two-dimensional covalent organic frameworks (2D COFs), but are yet challenging to gain control. In this work, we demonstrate synthetic control of both the layer stacking and chemical stability of 2D COFs by managing interlayer steric hindrance via a multivariate (MTV) approach. By co-condensation of triamines with and without alkyl substituents (ethyl and isopropyl) and a di- or trialdehyde, a family of two-, three-, and four-component 2D COFs with AA, AB, or ABC stacking is prepared. The alkyl groups are periodically appended on the channel walls and their contents, which can be synthetically tuned by the MTV strategy, control the stacking model and chemical stability of 2D COFs by maximizing the total crystal stacking energy and protecting hydrolytically susceptible backbones through kinetic blocking. Specifically, the COFs with higher concentration of alkyl substituents adopt AB or ABC stacking, while lower amount of functionalities leads to the AA stacking. The COFs bearing high concentration of isopropyl groups represent the first identified COFs that can retain crystallinity and porosity in boiling 20 M NaOH solution. After postsynthetic metalation with an iridium complex, the 2,2'-bipyridyl-derived COFs can heterogeneously catalyze C-H borylation of arenes, whereas the COF with isopropyl groups exhibits much higher activity than the COFs with ethyl groups and nonsubstituents due to the increased porosity and chemical stability. This work underscores the opportunity in using steric hindrance to tune and control layer stacking, chemical stability and properties of 2D COFs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b08452DOI Listing

Publication Analysis

Top Keywords

chemical stability
24
stacking chemical
16
layer stacking
12
cofs
10
stacking
9
two-dimensional covalent
8
covalent organic
8
organic frameworks
8
control layer
8
stability cofs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!