Perivascular mesenchymal stem/stromal cells can be isolated from the human endometrium using the surface marker SUSD2 and are being investigated for use in tissue repair. Mesenchymal stem/stromal cells from other tissues modulate T cell responses via mechanisms including interleukin-10, prostaglandin E2, TGF-β1 and regulatory T cells. Animal studies demonstrate that endometrial mesenchymal stem/stromal cells can also modify immune responses to implanted mesh, but the mechanism/s they employ have not been explored. We examined the immunomodulatory properties of human endometrial mesenchymal stem/stromal cells on lymphocyte proliferation using mouse splenocyte cultures. Endometrial mesenchymal stem/stromal cells inhibited mitogen-induced lymphocyte proliferation in vitro in a dose-dependent manner. Inhibition of lymphocyte proliferation was not affected by blocking the mouse interleukin-10 receptor or inhibiting prostaglandin production. Endometrial mesenchymal stem/stromal cells continued to restrain lymphocyte proliferation in the presence of an inhibitor of TGF-β receptors, despite a reduction in regulatory T cells. Thus, the in vitro inhibition of mitogen-induced lymphocyte proliferation by endometrial mesenchymal stem/stromal cells occurs by a mechanism distinct from the interleukin-10, prostaglandin E2, TGF-β1 and regulatory T cell-mediated mechanisms employed by MSC from other tissues. eMSCs were shown to produce interleukin-17A and Dickkopf-1 which may contribute to their immunomodulatory properties. In contrast to MSC from other sources, systemic administration of endometrial mesenchymal stem/stromal cells did not inhibit swelling in a T cell-mediated model of skin inflammation. We conclude that, while endometrial mesenchymal stem/stromal cells can modify immune responses, their immunomodulatory repertoire may not be sufficient to restrain some T cell-mediated inflammatory events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/REP-18-0266 | DOI Listing |
In Vitro Model
December 2024
Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.
Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.
View Article and Find Full Text PDFTransplantation
January 2025
Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA.
Reduced dependence on antirejection agents, improved long-term allograft survival, and induction of operational tolerance remain major unmet needs in organ transplantation due to the limitations of current immunosuppressive therapies. To address this challenge, investigators are exploring the therapeutic potential of adoptively transferred host- or donor-derived regulatory immune cells. Extracellular vesicles of endosomal origin (exosomes) secreted by these cells seem to be important contributors to their immunoregulatory properties.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
The heterogeneity and evolution of tumors remain significant obstacles in cancer treatment, contributing to both therapy resistance and relapse. Mesenchymal stem/stromal cells (MSCs) are multipotent stromal cells within the tumor microenvironment that interact with tumor cells through various mechanisms, including cell fusion. While previous research has largely focused on the effects of MSC-tumor cell fusion on tumor proliferation, migration, and tumorigenicity, emerging evidence indicates that its role in tumor maintenance, evolution, and recurrence, particularly under stress conditions, may be even more pivotal.
View Article and Find Full Text PDFActa Biomater
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!