Craniosynostosis (CS), the premature and pathological fusion of cranial sutures, is a relatively common developmental disorder. Elucidation of the pathways involved and thus therapeutically targeting it would be promising for the prevention of CS. In the present study, we examined the role of BMP pathway in the all-trans retinoic acid (atRA)-induced CS model and tried to target the pathway in vivo via PLGA-based control release. As expected, the posterior frontal suture was found to fuse prematurely in the atRA subcutaneous injection mouse model. Further mechanism study revealed that atRA could repress the proliferation while promote the osteogenic differentiation of suture-derived mesenchymal cells (SMCs). Moreover, BMP signal pathway was found to be activated by atRA, as seen from increased expression of BMPR-2 and pSMAD1/5/9. Recombinant mouse Noggin blocked the atRA-induced enhancement of osteogenesis of SMCs in vitro. In vivo, PLGA microsphere encapsulated with Noggin significantly prevented the atRA-induced suture fusion. Collectively, these data support the hypothesis that BMP signaling is involved in retinoic acid-induced premature fusion of cranial sutures, while PLGA microsphere-based control release of Noggin emerges as a promising strategy for prevention of atRA-induced suture fusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311184 | PMC |
http://dx.doi.org/10.1007/s00253-018-9457-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!