Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications.

Biosens Bioelectron

Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea; Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea. Electronic address:

Published: February 2019

Electrogenerated chemiluminescence (ECL) is an effective method for detecting a wide range of analytes including metal ions, virulent DNA, pathogenic bacteria, tumor cells and glucose. The attractive features of paper including passive liquid transport and biocompatibility are the main two advantages of using paper as a biosensing platform. To achieve key factors in paper-based sensors, the fabrication procedures and the analysis methods are fine tuned to satisfy the requirements of the ultimate-users. Here, we review various ECL signal amplification labels, inexpensive and portable devices, such as rechargeable batteries, which have replaced traditional instrumentation and different light detection technologies used in paper ECL devices. We also highlight the current trends and developments in ECL paper-based microfluidic analytical devices, as well as recent applications of ECL-based detection methods and inexpensive microfluidic devices. We discuss various paper-based devices, including 3D-origami devices, and devices utilizing self-powered and bipolar electrodes. Significant efforts have also been dedicated towards paper based multiplexing analysis (multi-label, and the multi-analyte strategies) and integration of microfluidic lab-on-paper devices with competences for point-to-care diagnostics. This review finally tabulates systematized data on figures of merit and novel types of ECL labels, used for detection of various biomarkers and analytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.10.038DOI Listing

Publication Analysis

Top Keywords

devices
9
analytical devices
8
ecl
5
advances microfluidic
4
paper-based
4
microfluidic paper-based
4
paper-based electrochemiluminescence
4
electrochemiluminescence analytical
4
devices point-of-care
4
point-of-care testing
4

Similar Publications

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions.

View Article and Find Full Text PDF

Some technical limitations to using the eccentric mode to measure peak eccentric strength of the hamstrings (PTH) were raised. PTH also has limited validity to predict performance or injury risk factor. Therefore, our aim was to compare PTH and other isokinetic variables tested in the eccentric and passive modes.

View Article and Find Full Text PDF

Due to their superior physicochemical features, chitosan thermosensitive hydrogels are multipurpose platforms that are frequently used in the biomedical industry. Many investigations have been conducted recently to modify their pore dimensions, expansion, biodegradability, stimulus-reaction characteristics, and other characteristics in order to better tailor them to the complex craniofacial tissues. They have been the focus of various studies that have attempted to load biological cargos for therapeutic and regenerative uses in the oro-facial tissues.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!