Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alarming growth of pharmaceutical residues in aquatic environment has elevated concerns about their potential impact on human health. Taking cognizance of this, the present study is focussed on the coating of cobalt ferrite nanoparticles with different functionalities and to use them as adsorbents for pharmaceutical waste. The thickness of the coating was analysed using Small angle X-ray scattering technique. Thorough study of the isotherms and kinetics were performed suggesting monolayer adsorption and pseudo kinetic order model, respectively. To get an insight of the interactions liable for adsorption of fluoroquinolones over the functionalized magnetic nanoparticles computational studies were undertaken. The results demonstrated substantial evidence proposing remarkable potential of these nanostructures as adsorbents for different pollutants with an additional advantage of stability and facile recoverability with a view to treat wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2018.10.058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!