Patterns of expression of sperm and seminal plasma microRNAs in boar semen.

Theriogenology

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.

Published: February 2019

Although sperm and seminal plasma differ in their origin, biophysical and biochemical properties of seminal plasma influence the sperm function. Seminal plasma is a fluid medium containing substances from testes, epididymides and accessory glands. Composition of seminal plasma varies among animal species and in boars, prostate and bulbourethral glands are major contributors to the volume and contents. While the origin of some components of seminal plasma are known, the source of recently discovered seminal plasma microRNAs remains unknown, in part due to the difficulty of recovering and characterizing RNA from porcine sperm and seminal plasma. To test the hypothesis that seminal plasma miRNAs interact with sperm, the first objective was to validate protocols for recovering RNAs from porcine seminal plasma and sperm, whereas the second objective was to characterize expression patterns of 84 prioritized microRNAs employing real time PCR methodology. The study identified a relationship between sperm and seminal plasma microRNAs, based on the normalized threshold cycle of amplifying cDNA in sperm and seminal plasma from the same semen of Landrace boars. Therefore, it was concluded that seminal plasma miRNAs may originate from sperm or these miRNAs may shuttle between sperm and seminal plasma in order to facilitate cell-to-cell communication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2018.10.021DOI Listing

Publication Analysis

Top Keywords

seminal plasma
56
sperm seminal
24
seminal
14
plasma
14
plasma micrornas
12
sperm
10
plasma mirnas
8
patterns expression
4
expression sperm
4
micrornas
4

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.

View Article and Find Full Text PDF

Screening for transcriptomic associations with Swine Inflammation and Necrosis Syndrome.

BMC Vet Res

January 2025

Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany.

Background: The recently identified swine inflammation and necrosis syndrome (SINS) affects tail, ears, teats, coronary bands, claws and heels of affected individuals. The primarily endogenous syndrome is based on vasculitis, thrombosis, and intimal proliferation, involving defence cells, interleukins, chemokines, and acute phase proteins and accompanied by alterations in clinical chemistry, metabolome, and liver transcriptome. The complexity of metabolic alterations and the influence of the boar led to hypothesize a polygenic architecture of SINS.

View Article and Find Full Text PDF

Polyphenols as a strategy for improving male reproductive system.

Mol Biol Rep

January 2025

Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.

Reproduction in males is one of the complicated processes that is mediated by many environmental factors, as well as by diet (e.g. supplements, nutritional value).

View Article and Find Full Text PDF

From spermatogenesis to fertilisation: the role of melatonin on ram spermatozoa.

Domest Anim Endocrinol

January 2025

BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:

This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!