Cardiac ischemia and reperfusion (IR) injury induces excessive emission of deleterious reactive O and N species (ROS/RNS), including the non-radical oxidant peroxynitrite (ONOO) that can cause mitochondria dysfunction and cell death. In this study, we explored whether IR injury in isolated hearts induces tyrosine nitration of adenine nucleotide translocase (ANT) and alters its interaction with the voltage-dependent anion channel 1 (VDAC1). We found that IR injury induced tyrosine nitration of ANT and that exposure of isolated cardiac mitochondria to ONOO induced ANT tyrosine, Y, nitration. The exposure of isolated cardiac mitochondria to ONOO also led ANT to form high molecular weight proteins and dissociation of ANT from VDAC1. We found that IR injury in isolated hearts, hypoxic injury in H9c2 cells, and ONOO treatment of H9c2 cells and isolated mitochondria, each decreased mitochondrial bound-hexokinase II (HK II), which suggests that ONOO caused HK II to dissociate from mitochondria. Moreover, we found that mitochondria exposed to ONOO induced VDAC1 oligomerization which may decrease its binding with HK II. We have reported that ONOO produced during cardiac IR injury induced tyrosine nitration of VDAC1, which resulted in conformational changes of the protein and increased channel conductance associated with compromised cardiac function on reperfusion. Thus, our results imply that ONOO produced during IR injury and hypoxic stress impeded HK II association with VDAC1. ONOO exposure nitrated mitochondrial proteins and also led to cytochrome c (cyt c) release from mitochondria. In addition, in isolated mitochondria exposed to ONOO or obtained after IR, there was significant compromise in mitochondrial respiration and delayed repolarization of membrane potential during oxidative (ADP) phosphorylation. Taken together, ONOO produced during cardiac IR injury can nitrate tyrosine residues of two key mitochondrial membrane proteins involved in bioenergetics and energy transfer to contribute to mitochondrial and cellular dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487210PMC
http://dx.doi.org/10.1016/j.mito.2018.10.002DOI Listing

Publication Analysis

Top Keywords

tyrosine nitration
16
onoo produced
12
onoo
11
mitochondria
9
adenine nucleotide
8
nucleotide translocase
8
voltage-dependent anion
8
anion channel
8
injury
8
injury isolated
8

Similar Publications

Activation of glutamine synthetase (GS) as a new strategy for the treatment of major depressive disorder and other GS-related diseases.

Acta Pharmacol Sin

January 2025

Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.

Glutamine synthetase (GS) plays a crucial role in the homeostasis of the glutamate-glutamine cycle in the brain. Hypoactive GS causes depressive behaviors. Under chronic stress, GS has no change in expression, but its activity is decreased due to nitration of tyrosine (Tyr).

View Article and Find Full Text PDF

Nitration of Tyr37 alters the aggregation pathway of hIAPP and enhances its cytotoxicity.

Int J Biol Macromol

January 2025

Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China. Electronic address:

The amyloid aggregation of hIAPP and the increased level of oxidative stress are closely related to the occurrence and development of type 2 diabetes (T2D). Protein tyrosine nitration is a common post-translational modification under oxidative stress conditions. We previously found that tyrosine nitrated hIAPP (3-NT-hIAPP) has higher cytotoxicity than wild type hIAPP.

View Article and Find Full Text PDF
Article Synopsis
  • Protein crosslinks caused by oxidative stress are linked to diseases like atherosclerosis, Alzheimer's, and Parkinson's, but their specific nature and locations in proteins remain unclear.
  • A new method utilizing "light" and "heavy" isotope-labeled reagents for efficient amine labeling of crosslinked peptides has shown improved identification and quantification over previous techniques.
  • This approach has led to the successful identification of novel crosslinks in proteins like β-casein and α-synuclein, as well as effective mapping of disulfide bonds in serum albumin, highlighting its versatility for studying protein modifications.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of Protein kinase B (PKB)/AKT nitration in myocardial ischemia and reperfusion injury (MIRI) and how resveratrol (RSV) may protect heart cells during this process.
  • The researchers used mouse models and H9c2 cell lines to analyze the effects of interventions like RSV and inhibitors on AKT nitration and cardiomyocyte apoptosis caused by ischemia.
  • Results showed that AKT nitration, which leads to reduced AKT activity and increased heart cell death, was decreased, and AKT phosphorylation increased when treated with RSV and other inhibitors, indicating RSV's potential protective effects against heart damage in MIRI.
View Article and Find Full Text PDF

Thyroid hormones play an important morphogenetic role during the fetal and neonatal periods and regulate numerous metabolic processes. In the central nervous system, they control myelination and overall brain development, regional gene expression, and regulation of oxygen consumption. Their deficiency in the fetal and neonatal periods causes severe mental retardation, due to lack of thyroid function, or to iodine deficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!