In vitro evaluation of novel reverse transcriptase inhibitors TAF (tenofovir alafenamide) and OBP-601 (2,3-didehydro-3-deoxy-4-ethynylthymidine) against multi-drug resistant primary isolates of HIV-2.

Antiviral Res

Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Campus Universitário, Quinta da Granja Monte de Caparica, 2829 - 511, Caparica, Portugal. Electronic address:

Published: January 2019

New antiretroviral drugs are needed to treat HIV-2 infected patients failing therapy. Herein, we evaluate the activity of novel reverse transcriptase inhibitors tenofovir alafenamide (TAF) and OBP-601(2,3-didehydro-3-deoxy-4-ethynylthymidine) against primary isolates from HIV-2 infected patients experiencing virologic failure. TAF and OBP-601 were tested against twelve primary isolates obtained from nine drug-experienced patients failing therapy and three drug naïve patients using a single-round infectivity assay in TZM-bl cells. The RT-coding region of pol was sequenced and the GRADE algorithm was used to identify resistance profiles and mutations. TAF and OBP-601 inhibited the replication of almost all isolates at a median EC of 0.27 nM and 6.83 nM, respectively. Two isolates showed moderate-level resistance to OBP-601 or TAF and two other isolates showed high-level resistance to OBP-601 or to both drugs. With one exception, all resistant viruses had canonical nucleoside reverse transcriptase inhibitors (NRTIs)-associated resistance mutations (K65R, N69S, V111I, Y115F, Q151M and M184V). Our results show that TAF has potent activity against most multi-drug resistant HIV-2 isolates and should be considered for the treatment of HIV-2 infected patients failing therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2018.10.018DOI Listing

Publication Analysis

Top Keywords

reverse transcriptase
12
transcriptase inhibitors
12
primary isolates
12
hiv-2 infected
12
infected patients
12
patients failing
12
failing therapy
12
novel reverse
8
tenofovir alafenamide
8
multi-drug resistant
8

Similar Publications

This study aims to demonstrate the effect of toadflax (bufalin) on erlotinib resistance in nonsmall cell lung cancer (NSCLC) by inhibiting the fibroblast growth factor receptor (FGFR). The microfluidic mobility transferase and caliper mobility-shift assays were employed to detect the FGFR inhibition by bufalin and the binding reversibility. Further, the inhibitory effects of bufalin were determined in HCC827 and HCC827/ER cells in vitro, investigating relative FGFR overexpression by quantitative reverse transcriptase-PCR (RT-qPCR) and FGFR downstream proteins, that is, FGFR substrate 2 (FRS2), extracellular signal-regulated kinase (ERK), and S6 by western blot analysis.

View Article and Find Full Text PDF

Background: Despite declining COVID-19 incidence, healthcare workers (HCWs) still face an elevated risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We developed a diagnostic multivariate model to predict positive reverse transcription polymerase chain reaction (RT-PCR) results in HCWs with suspected SARS-CoV-2 infection.

Methods: We conducted a cross-sectional study on episodes involving suspected SARS-CoV-2 symptoms or close contact among HCWs in Bogotá, Colombia.

View Article and Find Full Text PDF

Background: Macrophage polarization and efferocytosis have been implicated in CHD. However, the underlying mechanisms remain elusive. This study aimed to identify CHD-associated biomarkers using transcriptomic data.

View Article and Find Full Text PDF

Remote ischemic conditioning (RIC) has attracted considerable attention as a brain protection strategy, although its impact remains unclear. Hypothermia is the most effective strategy in experimental transient cerebral ischemia. Therefore, we compared the efficacy of RIC, hypothermia, and no treatment on cerebral ischemia.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is a progressive disease characterized by vascular reHypoxiaing, endothelial cell dysfunction, and inflammation. Liver Kinase B1 (LKB1, also known as STK11) is a central regulator of cell polarity and energy homeostasis. However, its specific role and mechanism of action in PH remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!