It has been shown that the hippocampus plays an essential role in the regulation of reward and memory as indicated by the conditioned place preference (CPP) paradigm. Morphine-induced CPP is a common method to consider motivational properties of morphine in animals. Recently, this model has been used in many laboratories to investigate neuronal mechanisms underlying reinstatement of morphine seeking induced by drug re-exposure. Our previous studies indicate that the hippocampus especially CA1 region is involved in reinstatement of drug-seeking behaviors. Also, several studies have shown that orexin attenuates key functional and behavioral effects of its co-transmitter dynorphin. The present study evaluates the role of orexinergic receptors within the CA1 region of the hippocampus in the reinstatement of morphine-induced CPP. Therefore, after the extinction period, the different doses (SB 334867; 0.3, 3, and 30 nM/0.5 μl DMSO) of either orexin-1 or -2 receptor antagonists were bilaterally microinjected into the CA1, 15 min before receiving an effective priming dose of morphine (1 mg/kg). The results revealed that administration of both SB 334867 and TCS OX2 29 prior to injection of the priming dose of morphine significantly reduced the reinstatement of morphine-induced CPP without altering the animal's locomotor activity. Also, the 50% effective dose value of SB 334867 on the reinstatement of morphine seeking behavior was close three times more than that in TCS OX2 29 treatment group. Therefore, the consequences suggested that both orexin receptors in the CA1 play a considerable role in the reinstatement of morphine-induced CPP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2018.10.011DOI Listing

Publication Analysis

Top Keywords

morphine-induced cpp
16
reinstatement morphine
12
morphine seeking
12
reinstatement morphine-induced
12
receptor antagonists
8
seeking behavior
8
ca1 region
8
receptors ca1
8
priming dose
8
dose morphine
8

Similar Publications

Article Synopsis
  • Adolescent exposure to THC (tetrahydrocannabinol) alters how morphine affects behavior in adulthood, impacting anxiety and drug-related responses.
  • * In particular, THC exposure reduced anxiety during morphine withdrawal but increased the craving for morphine, indicating complex interactions between these substances.
  • * Finally, the study identified changes in brain connectivity, particularly between the frontal cortex and dopamine regions, suggesting a neurological basis for how early THC exposure influences future responses to morphine.
View Article and Find Full Text PDF

Atorvastatin facilitates extinction and prevents reinstatement of morphine-induced conditioned place preference in rats.

Biomed Pharmacother

December 2024

School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran; Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic address:

Article Synopsis
  • Opioid addiction is a chronic disorder that leads to compulsive behavior and high relapse rates, despite current treatments targeting mu-opioid receptors.
  • This study investigated the effect of atorvastatin, a statin that crosses the blood-brain barrier, on preventing relapse in male rats using different models of drug-seeking behavior.
  • Results showed that atorvastatin significantly reduced morphine-seeking behavior, potentially by increasing brain-derived neurotrophic factor (BDNF) in key brain areas and altering neuronal activity.
View Article and Find Full Text PDF

Morphine is an opioid commonly used to treat pain in clinic, but it also has the potential to be highly addictive, which can lead to abuse. Despite these known risks, the cellular and molecular mechanism of morphine conditioned place preference (CPP) is still unclear. In this study, using a rat model of chronic morphine administration, we found that compared with the control group, the mRNA and protein expression of HCN2 channel in the ventral tegmental area (VTA) were upregulated.

View Article and Find Full Text PDF

Long-term use of opioid drugs such as morphine can induce addiction in the central nervous system through dysregulation of the reward system of the brain. Deep brain stimulation (DBS) is a non-pharmacological technique capable of attenuating behavioral responses associated with opioid drug consumption and possesses the capability to selectively activate and target localized brain regions with a high spatial resolution. However, long-term implantation of electrodes in brain tissue may limit the effectiveness of DBS due to changes in impedance, position, and shape of the tip of the stimulation electrode and the risk of infection of nerve tissue around the implanted electrode.

View Article and Find Full Text PDF

A novel intervention of molecular hydrogen on the unbalance of the gut microbiome in opioid addiction: Experimental and human studies.

Biomed Pharmacother

September 2024

College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China. Electronic address:

The gut-brain axis mediates the interaction pathway between microbiota and opioid addiction. In recent years, many studies have shown that molecular hydrogen has therapeutic and preventive effects on various diseases. This study aimed to investigate whether molecular hydrogen could serve as pharmacological intervention agent to reduce risks of reinstatement of opioid seeking and explore the mechanism of gut microbiota base on animal experiments and human studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!