Application of modified histone peptide arrays in chromatin research.

Arch Biochem Biophys

Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70550, Stuttgart, Germany. Electronic address:

Published: January 2019

Various post-translational modifications (PTMs) have been identified on histone proteins, which occur at hundreds of different sites. Histone PTMs influence the chromatin structure and serve as binding sites for reading domains, which further mediate downstream effects. Histone PTM antibodies or recombinant proteins derived from reading domains are unique research reagents essentially required to study histone modifications. To validate their specificity, histone PTM peptide arrays are used, because they allow to investigate the binding of proteins to a large number of different peptides in one experiment. Furthermore, histone PTM peptide arrays can be used to characterize reading domains and study the specificity of histone modifying enzymes. Here, we provide an overview of histone PTM peptide arrays, highlight some of their applications and compare different commercial histone PTM peptide arrays, viz. MODified Histone Peptide Array, AbSurance Pro Histone Peptide Microarrays, EpiTriton Histone Peptide Array and Histone Code Microarrays. These arrays contain histone peptides with several post-translational modifications in many different combinations, but they differ in peptide synthesis and immobilization methods, peptide and PTM coverage, and PTM combinatorial potential. In addition, some special applications of histone PTM peptide arrays like custom arrays or double peptide arrays are described.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2018.10.019DOI Listing

Publication Analysis

Top Keywords

peptide arrays
28
histone ptm
24
ptm peptide
20
histone
16
histone peptide
16
peptide
12
reading domains
12
arrays
9
modified histone
8
post-translational modifications
8

Similar Publications

Inflammation of adipose tissue is a contributing factor to many chronic diseases associated with obesity. We previously showed that micronutrients such as vitamin D (VD) limited this metabolic inflammation by decreasing inflammatory markers expression including miR-155 (microRNA-155) or miR-146a in different in vitro and in vivo models. These miRNAs could be incorporated into extracellular vesicles (EVs) in order to modulate the activity of target cells.

View Article and Find Full Text PDF

Cancer cells sense and respond to the extracellular environment, with differences in nanoscale ligand spacing affecting their behavior. Emerging reports show that stretch/ultrasound-mediated mechanical forces promote apoptosis (mechanoptosis) by increasing myosin contractility. Since myosin contractility is critical for nanoscale-ligand spacing-regulated cell behavior, we study the effect of ligand spacing on mechanoptosis.

View Article and Find Full Text PDF

Adipokines regulate the development and progression of MASLD through organellar oxidative stress.

Hepatol Commun

February 2025

Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Neuropathic pain poses a significant clinical challenge, largely due to the incomplete understanding of its molecular mechanisms, particularly the role of mitochondrial dysfunction. Bioinformatics analysis revealed that pyroptosis and inflammatory responses induced by spared nerve injury (SNI) in the spinal dorsal horn play a critical role in the initiation and persistence of neuropathic pain. Among the factors involved, TSPO (translocator protein) emerged as a key regulator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!