Emergent stroke is mostly evaluated using hospital based imaging. Quick imaging allows for rapid administration of IV thrombolysis and outcome improvement. Microwave imaging (MI) is an emerging portable imaging modality. Iron oxide nanoparticles are known to interact with microwave frequency electromagnetic radiation. In this manuscript, we provide proof of concept for a novel iron oxide nanoparticle enhanced microwave imaging device for differentiating emergent ischemic stroke from hemorrhagic stroke. A MI device was constructed. Attenuation of the microwave signal transmitted with or without iron oxide nanoparticles was measured over a 1-2 GHz frequency range in a silicone brain phantom, in New Zealand white rabbits, and in a human. Observed differences in signal attenuation were used to reconstruct an image following induction of a left sided anterior circulation stroke in a New Zealand white rabbit. An increase in microwave signal attenuation exists across a frequency range of 1.3-2 GHz when iron oxide nanoparticles are introduced into a silicone phantom model, in New Zealand white rabbits, and in a human volunteer. Using this increase in signal attenuation following nanoparticle administration, we localize induced ischemia in a New Zealand white rabbit. To the best of out knowledge, we provide the first evidence that superparamagnetic Iron oxide nanoparticles may be used as contrast in the setting of MI. Our data suggest infusion of intravenous iron oxide nanoparticles with follow on microwave imaging may ultimately allow for more timely administration of thrombolytic mediation in the setting of acute ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jocn.2018.10.100 | DOI Listing |
J Funct Biomater
December 2024
Division of Immunology and Microbiology, Iv. Javakhishvili Tbilisi State University, 1, Ilia Tchavchavadze Ave., 0179 Tbilisi, Georgia.
The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution.
View Article and Find Full Text PDFBrain Behav
December 2024
Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
Purpose: This study aims to explore the neuroprotective effect of propofol in improving traumatic brain injury (TBI) by inhibiting ferroptosis through the modulation of the endothelial nitric oxide (NO) synthase (eNOS)/NO signaling pathway.
Methods: The GSE173975 dataset was used to analyze the differentially expressed genes between TBI and sham surgery control groups in the short and long term. A TBI model was established in 2-month-old male SPF C57BL/6 mice by impact exposure of the exposed dura mater.
BMC Chem
December 2024
School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
Magnetic activated carbon has been proved its separation ability to overcome a main drawback of activated carbon powder. However, effect of magnetization method on characterizations and Chromium (VI) adsorption of this adsorbent from Artocarpus Heterophyllus Peel (jackfruit peel) has not been investigated yet. This study magnetized jackfruit peel activated carbon using thermochemical and co-precipitation methods.
View Article and Find Full Text PDFSmall
December 2024
Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
Autophagy is a key biological process that has proven extremely difficult to detect noninvasively. To address this, an autophagy detecting nanoparticle (ADN) was recently developed, consisting of an iron oxide nanoparticle decorated with cathepsin-cleavable arginine-rich peptides bound to the near-infrared fluorochrome Cy5.5.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Background: Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!