It should be possible to detect heart transplant rejection by nuclear magnetic resonance (NMR) imaging if it induces myocardial T1 and T2 proton relaxation time alterations or both. We studied 20 Lewis rats after a heterotopic heart transplantation. In vitro measurement of T1 and T2 was performed on a Minispec PC20 (Bruker) 3 to 9 days after transplantation. Histologic analysis allowed the quantification of rejection process based on cellular infiltration and myocardiolysis. Water content, a major determinant of relaxation time, was also studied. T1 and T2 were significantly prolonged in heterotopic vs orthotopic hearts (638 +/- 41 msec vs 606 +/- 22 msec for T1, p less than 0.01 and 58.2 +/- 8.4 msec vs 47.4 +/- 1.9 msec for T2, p less than 0.001). Water content was also increased in heterotopic hearts (76.4 +/- 2.3 vs 73.8 +/- 1.0, p less than 0.01). Most importantly, we found close correlations between T1 and especially T2 vs water content, cellular infiltration, and myocardiolysis. We conclude that rejection reaction should be noninvasively detected by NMR imaging, particularly with pulse sequences emphasizing T2.

Download full-text PDF

Source

Publication Analysis

Top Keywords

+/- msec
16
water content
12
nuclear magnetic
8
magnetic resonance
8
proton relaxation
8
heterotopic heart
8
heart transplantation
8
nmr imaging
8
relaxation time
8
cellular infiltration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!