A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of cadmium stress on inorganic and organic components in xylem sap of high cadmium accumulating rice line (Oryza sativa L.). | LitMetric

Physiological properties involved in cadmium (Cd) transport were investigated in the high Cd accumulating rice line (Lu527-8) in comparison with the normal rice line (Lu527-4) through a soil culture experiment. The results showed that Cd contents in xylem saps of Lu527-8 were 1.68-2.55 times higher than those of Lu527-4 under Cd stress. A high-positive correlation between Cd contents in xylem saps and Cd contents in shoots was observed. Lu527-8 owned a more rapid and effective transport of Cd to above-ground part. By analyzing the relationship between inorganic anions, organic components and Cd contents in xylem saps, the lower HPO and oxalate contents were considered to be related to the higher Cd transport in xylem sap of Lu527-8. As for citrate, tartaric and histidine content, significant increases were observed with the increasing Cd contents in xylem saps of two rice lines, and their contents of Lu527-8 were significantly higher than those of Lu527-4. Citrate, tartaric and histidine could take part in root-to-shoot Cd transport in xylem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2018.10.023DOI Listing

Publication Analysis

Top Keywords

contents xylem
16
xylem saps
16
organic components
8
xylem sap
8
accumulating rice
8
higher lu527-4
8
transport xylem
8
citrate tartaric
8
tartaric histidine
8
xylem
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!