Balanced Activity between Kv3 and Nav Channels Determines Fast-Spiking in Mammalian Central Neurons.

iScience

Department of Biological Chemistry and Pharmacology, The Ohio State University, 182 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA; Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA. Electronic address:

Published: November 2018

Fast-spiking (FS) neurons can fire action potentials (APs) up to 1,000 Hz and play key roles in vital functions such as sound location, motor coordination, and cognition. Here we report that the concerted actions of Kv3 voltage-gated K (Kv) and Na (Nav) channels are sufficient and necessary for inducing and maintaining FS. Voltage-clamp analysis revealed a robust correlation between the Kv3/Nav current ratio and FS. Expressing Kv3 channels alone could convert ∼30%-60% slow-spiking (SS) neurons to FS in culture. In contrast, co-expression of either Nav1.2 or Nav1.6 together with Kv3.1 or Kv3.3, but not alone or with Kv1.2, converted SS to FS with 100% efficiency. Furthermore, RNA-sequencing-based genome-wide analysis revealed that the Kv3/Nav ratio and Kv3 expression levels strongly correlated with the maximal AP frequencies. Therefore, FS is established by the properly balanced activities of Kv3 and Nav channels and could be further fine-tuned by channel biophysical features and localization patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218699PMC
http://dx.doi.org/10.1016/j.isci.2018.10.014DOI Listing

Publication Analysis

Top Keywords

nav channels
12
kv3 nav
8
analysis revealed
8
kv3
5
balanced activity
4
activity kv3
4
channels
4
channels determines
4
determines fast-spiking
4
fast-spiking mammalian
4

Similar Publications

Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive.

View Article and Find Full Text PDF

Elucidating the roles of voltage sensors in Na1.9 activation and inactivation through a spider toxin.

Biochim Biophys Acta Gen Subj

January 2025

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China. Electronic address:

The gating process of voltage-gated sodium (Na) channels is extraordinary intrinsic and involves numerous factors, such as voltage-sensing domain (VSD), the N-terminus and C-terminus, and the auxiliary subunits. To date, the gating mechanism of Na channel has not been clearly elucidated. Na1.

View Article and Find Full Text PDF

Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3 β (GSK3β) has been previously identified as a modulator of Nav1.

View Article and Find Full Text PDF

Introduction: There is a high unmet need for safe and effective non-opioid medicines to treat moderate to severe pain without risk of addiction. Voltage-gated sodium channel 1.8 (Na1.

View Article and Find Full Text PDF

How could simulations elucidate Nav1.5 channel blockers mechanism?

J Gen Physiol

March 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

Tao and Corry used metadynamics, an enhanced sampling method to identify and classify Nav channel blockers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!