Glassy carbon is a graphene-rich form of elemental carbon obtained from pyrolysis of polymers, which is composed of three-dimensionally arranged, curved graphene fragments alongside fractions of disordered carbon and voids. Pyrolysis encompasses gradual heating of polymers at ≥ 900 °C under inert atmosphere, followed by cooling to room temperature. Here we report on an experimental method to perform in situ high-resolution transmission electron microscopy (HR-TEM) for the direct visualization of microstructural evolution in a pyrolyzing polymer in the 500-1200 °C temperature range. The results are compared with the existing microstructural models of glassy carbon. Reported experiments are performed at 80 kV acceleration voltage using MEMS-based heating chips as sample substrates to minimize any undesired beam-damage or sample preparation induced transformations. The outcome suggests that the geometry, expansion and atomic arrangement within the resulting graphene fragments constantly change, and that the intermediate structures provide important cues on the evolution of glassy carbon. A complete understanding of the pyrolysis process will allow for a general process tuning specific to the precursor polymer for obtaining glassy carbon with pre-defined properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214944 | PMC |
http://dx.doi.org/10.1038/s41598-018-34644-9 | DOI Listing |
Bioelectrochemistry
January 2025
Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania. Electronic address:
Herein, we present an efficient approach for developing electrochemical aptasensing interfaces, by "click" postfunctionalization of phenylethynyl-grafted glassy carbon substrates with mixed monolayers containing biorecognition elements and phosphorylcholine zwitterionic groups. Typically, controlling the composition of multicomponent surface layers by grafting from a mixture of aryldiazonium salts is challenging due to differences in their chemical reactivity. Our approach circumvents this issue by employing the electrochemical reduction of a single aryldiazonium salt containing a silyl-protected alkyne group followed by deprotection, to create phenylethynyl monolayers which can subsequently accommodate the concurrent immobilization of bioreceptors and zwitterionic groups through "click" postfunctionalization.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States.
This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gazi-antep, 27000, Turkey.
In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.
View Article and Find Full Text PDFInorg Chem
January 2025
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!