Syndecans, a family of cell surface heparan sulfate proteoglycans, regulate cell differentiation via binding of their heparan sulfate chains to growth factors and cytokines and play a role in tumor growth and progression, wound repair, and intestinal mucosal damage. However, the functional and mechanistic roles of syndecans in osteoclast differentiation and bone metabolism are yet unclear. Here, we demonstrated that post-translationally glycosylated ectodomains of syndecan-1 to 4 obtained from mammalian cells efficiently suppressed osteoclast differentiation compared to those obtained from Escherichia coli with no systems for glycosylation. A concomitant decrease in the expression of osteoclast markers such as nuclear factor of activated T cells 1 (NFATc1), c-Fos, and ATP6V0D2 was observed. In addition, heparan sulfate and selectively N-desulfated heparin derivatives with 2-O- and 6-O-sulfate groups and no anticoagulant activity in blood inhibited osteoclast differentiation. The inhibitory effects of syndecan ectodomains, heparan sulfate, and N-desulfated heparin derivatives on osteoclast differentiation were attributed to their direct binding to the macrophage-colony stimulating factor (M-CSF), resulting in the blocking of M-CSF-mediated downstream signals such as extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK), p38, and Akt. Furthermore, mice injected with syndecan ectodomains, heparan sulfate, and N-desulfated heparin derivatives into periosteal regions of calvaria showed reduction in the formation of tartrate-resistant acid phosphatase (TRAP)-positive mature osteoclasts on the calvarial bone surface, thereby exhibiting decreased bone resorption. Together, these results revealed a novel role of heparan sulfate chains of syndecan ectodomains in the regulation of osteoclast differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215006PMC
http://dx.doi.org/10.1038/s41419-018-1167-8DOI Listing

Publication Analysis

Top Keywords

heparan sulfate
24
osteoclast differentiation
20
syndecan ectodomains
16
n-desulfated heparin
12
heparin derivatives
12
direct binding
8
binding macrophage-colony
8
macrophage-colony stimulating
8
stimulating factor
8
sulfate chains
8

Similar Publications

Advances in the Pathogenesis of Hereditary Angioedema.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Department of Allergy, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.

Hereditary angioedema (HAE) is a rare,unpredictable,autosomal dominant disorder characterized by recurrent swelling in subcutaneous and submucosal tissue.In recent years,the pathophysiology and pathogenesis of HAE have been continuously studied and elucidated.In addition to the genes encoding complement 1 esterase inhibitors,new pathogenic variants have been identified in the genes encoding coagulation factor Ⅻ,plasminogen,angiopoietin-1,kininogen,heparan sulfate 3-O-sulfotransferase 6,and myoferlin in HAE.

View Article and Find Full Text PDF

Heparanase 2 Modulation Inhibits HSV-2 Replication by Regulating Heparan Sulfate.

Viruses

November 2024

Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.

The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how extracellular histone H4 contributes to acute respiratory distress syndrome (ARDS) triggered by oleic acid (OA) in mice.
  • The research found that levels of histone H4 increased significantly after OA injection, correlating with the severity of ARDS, and that pre-treatment with histone H4 worsened lung edema and mortality.
  • Histone H4 activated endothelial cells through mechanisms involving heparan sulfate degradation and certain receptors, leading to inflammation and thrombus formation in the lungs.
View Article and Find Full Text PDF

Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.

View Article and Find Full Text PDF
Article Synopsis
  • Heparanase is a key enzyme in the breakdown of heparan sulfate, contributing to tumor growth and metastasis, making it a target for cancer treatments.
  • Researchers synthesized specific trisaccharides and a tetrasaccharide that inhibit heparanase activity, focusing on glycol-split versions as potential inhibitors.
  • Studies using STD NMR and molecular docking revealed that these glycol-split trisaccharides had stronger binding and inhibitory effects against heparanase compared to their intact forms, providing insight into their mechanisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!