Direct targeting of the mouse optic nerve for therapeutic delivery.

J Neurosci Methods

Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA. Electronic address:

Published: February 2019

Background: Animal models of optic nerve injury are often used to study central nervous system (CNS) degeneration and regeneration, and targeting the optic nerve is a powerful approach for axon-protective or remyelination therapy. However, the experimental delivery of drugs or cells to the optic nerve is rarely performed because injections into this structure are difficult in small animals, especially in mice.

New Method: We investigated and developed methods to deliver drugs or cells to the mouse optic nerve through 3 different routes: a) intraorbital, b) through the optic foramen and c) transcranial.

Results: The methods targeted different parts of the mouse optic nerve: intraorbital proximal (intraorbital), intracranial middle (optic-foramen) or intracranial distal (transcranial) portion.

Comparison With Existing Methods: Most existing methods target the optic nerve indirectly. For instance, intravitreally delivered cells often cannot cross the inner limiting membrane to reach retinal neurons and optic nerve axons. Systemic delivery, eye drops and intraventricular injections do not always successfully target the optic nerve. Intraorbital and transcranial injections into the optic nerve or chiasm have been performed but these methods have not been well described. We approached the optic nerve with more selective and precise targeting than existing methods.

Conclusions: We successfully targeted the murine optic nerve intraorbitally, through the optic foramen, and transcranially. Of all methods, the injection through the optic foramen is likely the most innovative and fastest. These methods offer additional approaches for therapeutic intervention to be used by those studying white matter damage and axonal regeneration in the CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870831PMC
http://dx.doi.org/10.1016/j.jneumeth.2018.10.038DOI Listing

Publication Analysis

Top Keywords

optic nerve
48
optic
15
mouse optic
12
nerve
12
optic foramen
12
drugs cells
8
nerve intraorbital
8
existing methods
8
target optic
8
methods
7

Similar Publications

Purpose: Uveal melanoma (UM) is the most common primary ocular malignancy. The size and location of the tumor are decisive for brachytherapy with the β-emitting ruthenium-106 (Ru-106) plaque. The treatment of juxtapapillary and juxtafoveolar UM may be challenging because of the proximity or involvement of the macula and optic nerve and high recurrence rates.

View Article and Find Full Text PDF

Sphenoid wing meningiomas (SWM) frequently compress structures of the optic pathway, resulting in significant visual dysfunction characterized by vision loss and visual field deficits, which profoundly impact patients' quality of life (QoL), daily activities, and independence. The objective of this study was to assess the impact of SWM surgery on patient-reported outcome measures (PROMs) regarding postoperative visual function. The Visual Function Score Questionnaire (VFQ-25) is a validated tool designed to assess the impact of visual impairment on quality of life.

View Article and Find Full Text PDF

Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients.

Int J Mol Sci

December 2024

Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal.

Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential.

View Article and Find Full Text PDF

: To evaluate the long-term effects of coronavirus disease (COVID-19) on optic disc and macular microvasculature. : 40 post-COVID-19 and 40 healthy subjects were included. Optical coherence tomography angiography (OCTA) was performed for all subjects at the first visit and repeated in the fourth and twelfth months.

View Article and Find Full Text PDF

Glaucoma treatment involves reducing the intraocular pressure (IOP), which can damage the optic nerve, to a normal range. Aqueous drainage devices may be used for treatment, and a variety of devices have been proposed. However, they have a non-variable and uniform inner diameter, which makes it difficult to accommodate the IOP fluctuations that occur after glaucoma surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!