Background: The demand for neuromodulatory and recording tools has resulted in a surge of publications describing techniques for fabricating devices and accessories in-house suitable for neurological recordings. However, many of these fabrication protocols use equipment which are not common to biological laboratories, thus limiting researchers to the use of commercial alternatives. New method:We have developed a simple yet robust implantable stimulating surface electrode which can be fabricated in all wet-bench laboratories.
Results: Female Sprague-Dawley rats received epidural implantation of the electrodes over the fore and hind limb areas of their motor cortex. Stimulation of the motor cortex successfully evoked fore- and hind limb motor outputs. The device was also able to record surface potentials of the motor cortex following epidural stimulation of the spinal cord. Comparisons with existing methods:For stimulation of the motor cortex, often stiff stainless or copper wires are roughly tucked underneath the skull, with little accuracy of localization. While, commercially available devices utilize burr holes and screw electrodes. Our new electrode design provides us stereotaxic accuracy that was not previously available.
Conclusion: We developed a chronic implantable electrode capable of being fabricated in all wet-labs, are robust, versatile and electrically sensitive enough for long-term chronic use. The simple and versatile electrode design provides scientific, economical and ethical benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2018.10.036 | DOI Listing |
Nat Commun
January 2025
Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).
View Article and Find Full Text PDFNeuroimage
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA. Electronic address:
Noninvasive brain stimulation of the primary motor cortex has been shown to alter therapeutic outcomes in stroke and other neurological conditions, but the precise mechanisms remain poorly understood. Determining the impact of such neurostimulation on the neural processing supporting motor control is a critical step toward further harnessing its therapeutic potential in multiple neurological conditions affecting the motor system. Herein, we leverage the excellent spatio-temporal precision of magnetoencephalographic (MEG) imaging to identify the spectral, spatial, and temporal effects of high-definition transcranial direct current stimulation (HD-tDCS) on the neural responses supporting motor control.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Centre for Clinical Neurosciences, McMaster University, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada. Electronic address:
Background: Neurofilament light chain (NfL) is a cytoskeletal protein that supports neuronal structure. Blood NfL levels are reported to be higher in diseases where myelin is damaged. Studies investigating intracortical myelin (ICM) in bipolar disorder (BD) have reported deficits in ICM maturation over age.
View Article and Find Full Text PDFMult Scler Relat Disord
December 2024
IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy. Electronic address:
Background: Multiple sclerosis (MS) is a demyelinating disease characterized by balance and gait impairment, fatigue, anxiety, depression, and diminished quality of life. Transcranial direct current stimulation (tDCS) has emerged as an effective intervention for managing these symptoms.
Objective: This study aims to investigate the efficacy of remotely supervised tDCS (RS-tDCS) applied to the left dorsolateral prefrontal cortex, in conjunction with a telerehabilitation (TR) program, on motor (balance and gait), cognitive (executive functions), and participation outcomes (fatigue, anxiety, depression, and quality of life) in persons with MS (pwMS).
Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!