Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One hundred and fifteen cases [Down Syndrome (DS) n = 75, Multiple Congenital Anomalies (MCA) n = 15 and Aplastic Anaemia (AA) n = 25], with respect to their nature of predisposition to cancer, were selected for clinical, cytogenetic and cyto-molecular studies to understand the severity of genomic instability according to the nature of the different diseases. Cytogenetic studies included chromosomal aberration (CA) assays and cytokinesis block micronucleus cytome (CBMN-Cyt) assays. In DS, MCA and AA, average frequencies of nuclear anomalies (NA) were 0.015 ± 0.0006, 0.021 ± 0.00123, 0.031 ± 0.00098, respectively and CA were 0.107 ± 0.003, 0.105 ± 0.008, 0.158 ± 0.006, respectively per metaphase. The extent of genomic instability in patients analysed by CBMN-Cyt assays and CA assays was statistically significant in all groups. Comparatively decreased cytokinesis block proliferation index (CBPI) observed in AA patients of 1.59 ± 0.05, support the assumption that decreased levels of CBPI indicate increased genomic damage. Furthermore, we performed peptide nucleic acid fluorescence in situ hybridisation (PNA FISH) analysis to understand the mechanisms behind genomic instability and telomere dysfunction. PNA FISH showed increased frequencies of telomere signal free ends (0.98 ± 0.13) in individuals with higher genomic instability. Therefore, the results demonstrate that increased chromosomal instability along with higher telomere attrition or loss may initiate gross DNA damage and leads to chromosomal instability, which is an important mechanism for triggering genomic instability - an important hallmark of cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrgentox.2018.06.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!