Angiostrongylus vasorum is a nematode parasite of the pulmonary arteries and heart that infects domestic and wild canids. Dogs (Canis familiaris) and red foxes (Vulpes vulpes) are the most commonly affected definitive hosts. Recent studies suggest that angiostrongylosis is an emerging disease, and that red foxes may play an important role in the epidemiology of the parasite. Genetic analyses of parasites collected from dogs and foxes throughout Europe have shown that the same parasite haplotypes are commonly shared between different host species. However, the extent of genetic diversity within local A. vasorum populations and individual hosts is unknown. The objective of the present study was to assess the occurrence of genetic diversity among A. vasorum (a) recovered from different foxes within the Greater London area (a localised population, single worm per fox dataset); and (b) hosted within single foxes (multiple worms per fox dataset). During 2016, A. vasorum worms were collected from foxes culled for other purposes in London. DNA was extracted from each parasite and a partial fragment of the mitochondrial cytochrome oxidase subunit 1 (mtCOI) gene was amplified and sequenced. Sequences from the single worm dataset were compared with those published elsewhere. Combined, 19 haplotypes were described of which 15 were identified from foxes found in London, indicating that considerable genetic diversity can be detected within a local geographic area. Analysis of the multiple worm dataset identified 22 haplotypes defining worms recovered from just six foxes, emphasising the relevance of wild canines as reservoirs of genetic diversity. This is the first study to explore the genetic complexity of individual fox-hosted A. vasorum populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetpar.2018.09.008 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200438, China.
Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named (), harboring a mutation in the - () gene. Loss of leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration.
View Article and Find Full Text PDFEven in some common species, the genetic variation key to resilience is slipping away.
View Article and Find Full Text PDFWe lack tools to edit DNA sequences at scales necessary to study 99% of the human genome that is noncoding. To address this gap, we applied CRISPR prime editing to insert recombination handles into repetitive sequences, up to 1697 per cell line, which enables generating large-scale deletions, inversions, translocations, and circular DNA. Recombinase induction produced more than 100 stochastic megabase-sized rearrangements in each cell.
View Article and Find Full Text PDFScience
January 2025
Department of Genome Sciences, University of Washington, Seattle, WA, USA.
Studying the functional consequences of structural variants (SVs) in mammalian genomes is challenging because (i) SVs arise much less commonly than single-nucleotide variants or small indels and (ii) methods to generate, map, and characterize SVs in model systems are underdeveloped. To address these challenges, we developed Genome-Shuffle-seq, a method that enables the multiplex generation and mapping of thousands of SVs (deletions, inversions, translocations, and extrachromosomal circles) throughout mammalian genomes. We also demonstrate the co-capture of SV identity with single-cell transcriptomes, facilitating the measurement of SV impact on gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!