Chemical investigation on CHCl extract of the marine sponge , collected from the South China Sea, afforded two new 5,6-epoxysterols, 5α,6α-epoxycholesta-8(14),22()-diene-3,7-diol () and (24)-24-ethyl-5α,6α-epoxycholesta-8(14),22()-diene-3,7-diol () along with ten known related steroid analogs (-). Their structures were elucidated on the basis of NMR spectroscopic analyses, and comparison with the literature. All isolates were tested for cytotoxicity against three tumor cell lines only known compounds and exhibited notable cytotoxic activity against A549 (IC: 3.0 and 5.6 μM), PC9 (2.0 and 15.6 μM), and MCF-7 (9.4 and 11.8 μM) cell lines, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14786419.2018.1513510 | DOI Listing |
Eur J Pharmacol
January 2025
Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA. Electronic address:
Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, V-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departments of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Takamatsu 761-0793, Kagawa Prefecture, Japan.
Galectins are widely distributed throughout the animal kingdom, from marine sponges to mammals. Galectins are a family of soluble lectins that specifically recognize β-galactoside-containing glycans and are categorized into three subgroups based on the number and function of their carbohydrate recognition domains (CRDs). The interaction of galectins with specific ligands mediates a wide range of biological activities, depending on the cell type, tissue context, expression levels of individual galectin, and receptor involvement.
View Article and Find Full Text PDFNat Prod Bioprospect
January 2025
International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
Marine natural products have long been recognized as a vast and diverse source of bioactive compounds with potential therapeutic applications, particularly in oncology. This review provides an updated overview of the significant advances made in the discovery and development of marine-derived anticancer drugs between 2019 and 2023. With a focus on recent research findings, the review explores the rich biodiversity of marine organisms, including sponges, corals, algae, and microorganisms, which have yielded numerous compounds exhibiting promising anticancer properties.
View Article and Find Full Text PDFToxics
January 2025
Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
Human activities increasingly threaten marine ecosystems through rising waste and temperatures. This study investigated the role of plastics as vectors for bacteria and the effects of temperature on the marine sponge . Samples of plastics and sponges were collected during July, August (high-temperature period), and November (lower-temperature period).
View Article and Find Full Text PDFMar Drugs
January 2025
Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Geneva, Switzerland.
The rise in multidrug-resistant (MDR) bacteria has prompted extensive research into antibacterial compounds, as these resistant strains compromise current treatments. This resistance leads to prolonged hospitalization, increased mortality rates, and higher healthcare costs. To address this challenge, the pharmaceutical industry is increasingly exploring natural products, particularly those of marine origin, as promising candidates for antimicrobial drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!