Polaronic configurations that were introduced by oxygen vacancy in rutile TiO₂ crystal have been studied by the DFT + method. It is found that the building block of TiO₆ will expand when extra electron is trapped in the central Ti atom as polaron. With manually adjusting the initial geometry of oxygen vacancy structure, a variety of polaronic configurations are obtained after variable-cell relaxation. By calculating different sizes of supercell model, it is found that the most stable configuration can be influenced by the density of oxygen vacancy. With increasing interaction between vacancies, the most stable polaronic configuration change from small polaronic configuration to mixed configuration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267301 | PMC |
http://dx.doi.org/10.3390/ma11112156 | DOI Listing |
J Hazard Mater
January 2025
College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; Shenyang Key Laboratory of Chemical Pollution Control, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:
Here, a quenching strategy was developed to create oxygen vacancies in Cu doped α-MnO. The evolutions of oxygen vacancies were directly followed by means of XRD refinement, EPR and XPS. In combination with DFT calculations and detailed characterizations, evidence is captured that oxygen vacancies not only act as direct sites for the adsorption and activation of gaseous oxygen and toluene, but also accelerate the consumption and replenishment cycle of lattice oxygen species by weakening the strength of metal-oxygen bonds.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry, Dalian University of Technology, Dalian 116024 PR China. Electronic address:
The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
Rare earth phosphate (XPO) is an extremely important rare earth compound. It can exhibit excellent activity and stability in catalytic applications by modifying its inherent properties. Porous single-crystalline (PSC) PrPO and SmPO with a large surface area consist of ordered lattices and disordered interconnected pores, resulting in activity similar to nanocrystals and stability resembling bulk crystals.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
King Abdulaziz City for Science and Technology (KACST), Microelectronics and Semiconductors Institute, Mailbox 6086, Riyadh 11442, Saudi Arabia.
With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!