Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multiexponential T (MET) Relaxometry and Magnetization Transfer (MT) are among the most promising MRI-derived techniques for white matter (WM) characterization. Both techniques are shown to have histologically correlated sensitivity to myelin, but these correlations are not fully understood. Furthermore, MET and MT report on different WM features, thus they can be considered specific to different (patho)physiological states. Two-dimensional studies potentially resolving interactions, such as those commonly used in NMR, have been rarely performed in this context. Here, we investigated how off-resonance irradiation affects different MET components in fixed rat spinal cord white matter at 16.4 T. These 2D MT-MET experiments reveal that MT affects both short and long T components in a tract-specific fashion. The spatially distinct signal modulations enhanced contrast between microstructurally-distinct spinal cord tracts. Two hypotheses to explain these findings were proposed: either selective elimination of a short T component through pre-saturation combines with intercompartmental water exchange effects occurring on the irradiation timescale; or, other macromolecular species that exist within the tissue - other than myelin - such as neurofilaments, may be involved in the apparent microstructural segregation of the spinal cord (SC) from MET. Though further investigation is required to elucidate the underlying mechanism, this phenomenon adds a new dimension for WM characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2018.10.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!