A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multivariate spatial approach to model crash counts by injury severity. | LitMetric

A multivariate spatial approach to model crash counts by injury severity.

Accid Anal Prev

Department of Modeling, Simulation & Visualization Engineering, Old Dominion University (ODU), 4700 Elkhorn Ave, Norfolk, VA, 23529, USA. Electronic address:

Published: January 2019

Conventional safety models rely on the assumption of independence of crash data, which is frequently violated. This study develops a novel multivariate conditional autoregressive (MVCAR) model to account for the spatial autocorrelation of neighboring sites and the inherent correlation across different crash types. Manhattan, which is the most densely populated urban area of New York City, is used as the study area. Census tracts are used as the basic geographic units to capture crash, transportation, land use, and demo-economic data. The specification of the proposed multivariate model allows for jointly modeling counts of various crash types that are classified according to injury severity. Results of Moran's I tests show the ability of the MVCAR model to capture the multivariate spatial autocorrelation among different crash types. The MVCAR model is found to outperform the others by presenting the lowest deviance information criterion (DIC) value. It is also found that the unobserved heterogeneity was mostly attributed to spatial factors instead of non-spatial ones and there is a strong shared geographical pattern of risk among different crash types.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2018.10.009DOI Listing

Publication Analysis

Top Keywords

crash types
16
mvcar model
12
multivariate spatial
8
injury severity
8
spatial autocorrelation
8
crash
7
model
5
multivariate
4
spatial approach
4
approach model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!