Emerging carbon dots (CDs) are widely used as fluorescent probes in biological and environmental fields, nevertheless, the control of CDs based on different detection mechanisms is rarely reported. In this paper, green luminescent CDs (G-CDs) were prepared by a facile hydrothermal treatment of benzoxazine monomers (BZM). The obtained G-CDs showed pH dependent photoluminescence, which could be designed as fluorescence turn-on and turn-off sensors. The G-CDs exhibited weak photoluminescence at pH = 7.0 and could be turned on by Zn(II) selectively with the limitation of 0.32 μM in the concentration range from 1 to 100 μM. When pH = 10.0, Cr(VI) could quench the strong fluorescence of G-CDs efficiently, and the limit of detection was 0.99 μM with a linear range of 1-50 μM. Furthermore, the fluorescence turn-on and turn-off performance of G-CDs was attributed to the intramolecular charge transfer (ICT) of Zn(II) and the inner filter effect (IFE) of Cr(VI), respectively. The excellent probes were successfully applied for the detection of Zn(II) in biological system and Cr(VI) in environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2018.10.088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!