Different studies have shown the efficiency of a feed-forward neural network in categorizing basic emotional facial expressions. However, recent findings in psychology and cognitive neuroscience suggest that visual recognition is not a pure bottom-up process but likely involves top-down recurrent connectivity. In the present computational study, we compared the performances of a pure bottom-up neural network (a standard multi-layer perceptron, MLP) with a neural network involving recurrent top-down connections (a simple recurrent network, SRN) in the anticipation of emotional expressions. In two complementary simulations, results revealed that the SRN outperformed the MLP for ambiguous intensities in the temporal sequence, when the emotions were not fully depicted but when sufficient contextual information (related to previous time frames) was provided. Taken together, these results suggest that, despite the cost of recurrent connections in terms of energy and processing time for biological organisms, they can provide a substantial advantage for the fast recognition of uncertain visual signals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2018.09.007DOI Listing

Publication Analysis

Top Keywords

neural network
12
recurrent top-down
8
pure bottom-up
8
recurrent
5
top-down synaptic
4
synaptic connections
4
connections anticipation
4
anticipation dynamic
4
dynamic emotions
4
emotions studies
4

Similar Publications

In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.

View Article and Find Full Text PDF

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.

Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.

View Article and Find Full Text PDF

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

JC polyomavirus (JCPyV) establishes a persistent, asymptomatic kidney infection in most of the population. However, JCPyV can reactivate in immunocompromised individuals and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease with no approved treatment. Mutations in the hypervariable non-coding control region (NCCR) of the JCPyV genome have been linked to disease outcomes and neuropathogenesis, yet few metanalyses document these associations.

View Article and Find Full Text PDF

Background: Nanotechnology has been the main area of focus for research in different disciplines, such as medicine, engineering, and applied sciences. Therefore, enormous efforts have been made to insert the use of nanoparticles into the daily routines of different platforms due to their impressive performance and the huge potential they could offer. Among numerous types of nanomaterials, titanate nanotubes have been widely recognised as some of the most promising nanocarriers due to their outstanding profile and brilliant design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!