Major QTL controls adaptation to serpentine soils in Mimulus guttatus.

Mol Ecol

Department of Biology, Duke University, Durham, North Carolina.

Published: December 2018

Spatially varying selection is a critical driver of adaptive differentiation. Yet, there are few examples where the fitness effects of naturally segregating variants that contribute to local adaptation have been measured in the field. Plant adaptation to harsh soil habitats provides an ideal study system for investigating the genetic basis of local adaptation. The work presented here identifies a major locus underlying adaptation to serpentine soils in Mimulus guttatus and estimates the strength of selection on this locus in native field sites. Reciprocal transplant and common-garden studies show that serpentine and nonserpentine populations of M. guttatus differ in their ability to survive on serpentine soils. We directly mapped these field survival differences by performing a bulk segregant analysis with F2 survivors from a field transplant study and identify a single QTL where individuals that are homozygous for the nonserpentine allele do not survive on serpentine soils. Genotyping the survivors from an independent mapping population reveals that this same QTL controls serpentine tolerance in a second, geographically distant population. Finally, we show that this QTL controls tolerance to soil properties, as opposed to some other aspect of the field sites that may differ, by performing a laboratory-based common-garden experiment in native serpentine soils that replicates the survival differences observed in the field. These results indicate that despite the myriad chemical and physical challenges plants face in serpentine habitats, adaptation to these soils in M. guttatus has a simple genetic basis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.14922DOI Listing

Publication Analysis

Top Keywords

serpentine soils
20
qtl controls
12
serpentine
8
adaptation serpentine
8
soils mimulus
8
mimulus guttatus
8
local adaptation
8
genetic basis
8
field sites
8
survive serpentine
8

Similar Publications

Understanding exposure risk using soil testing and GIS around an abandoned asbestos mine.

Ann Glob Health

January 2025

Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104 USA.

Abandoned asbestos mines are a potential source of environmental contamination and exposure for nearby residents. The asbestos exposure risk may persist even after the cessation of mining activity if the mine is not properly closed. One such abandoned mine is at Roro Hills in the Jharkhand state of India.

View Article and Find Full Text PDF

Serpentine soils are characterized by high concentrations of heavy metals (HMs) and limited essential nutrients with remarkable endemic plant diversity, yet the mechanisms enabling plant adaptation to thrive in such harsh environments remain largely unknown. Full-length 16S rRNA amplicon sequencing, coupled with physiological and functional assays, was used to explore root-associated bacterial community composition and their metabolic and ecological functions. The results revealed that serpentine plant species exhibited significantly higher metal transfer factor values compared to non-serpentine plant species, particularly evident in Bidens pilosa, Miscanthus floridulus, and Leucaena leucocephala.

View Article and Find Full Text PDF

Serpentine soils are characterized as a unique environment with low nutrient availability and high heavy metal concentrations, often hostile to many plant species. Even though these unfavorable conditions hinder the growth of various plants, particular vegetation with different adaptive mechanisms thrives undisturbed. One of the main contributors to serpentine adaptation represents serpentine bacteria with plant growth-promoting properties that assemble delicate interactions with serpentine plants.

View Article and Find Full Text PDF

Ultramafic soils are a natural source of metals such as Ni, Co and Cr that can pose ecosystem and human risks. Here, we assessed the environmental, ecological, and human health (carcinogenic and non-carcinogenic) risks from exposure to ultramafic soils through an integrated approach using petrographic and soil mineralogical assessments together with total, available, bioaccessible, and soil fractions analyses of Ni, Co and Cr in ultramafic soils from Brazil. The metal concentrations were similar or up to 5-fold higher for Ni than other studies worldwide in ultramafic soils.

View Article and Find Full Text PDF

Intimate microbe-water-mineral interactions mediate alkalization in the pyroxene-rich iron ore mines in Panxi area, Southwest China.

J Hazard Mater

December 2024

School of Environmental Studies, China University of Geosciences, Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan, China.

Article Synopsis
  • The study focuses on the under-explored microbial interactions and (bio)geochemical processes in alkaline mine environments, specifically in iron mines located in the Panxi mining area of Southwest China.
  • Compared to less impacted river samples, the iron ore samples revealed higher levels of various minerals and elements, indicating significant changes in water chemistry due to mining activity, with particular emphasis on sulfate concentrations.
  • The research identified specific microbial communities, mainly Serpentinimonas spp. and Thiobacillus spp., that thrive in high pH conditions, suggesting that these microbes play important roles in the evolution of these alkaline mine ecosystems and might help in strategies for mine restoration.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!