A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest-savanna boundaries in Ghana and Brazil. | LitMetric

Forest-savanna boundaries extend across large parts of the tropics but the variability of photosynthetic capacity in relation to soil and foliar nutrients across these transition zones is poorly understood. For this reason, we compared photosynthetic capacity (maximum rate of carboxylation of Rubisco at 25 C° (Vcmax25), leaf mass, nitrogen (N), phosphorus (P) and potassium (K) per unit leaf area (LMA, Narea, Parea and Karea, respectively), in relation to respective soil nutrients from 89 species at seven sites along forest-savanna ecotones in Ghana and Brazil. Contrary to our expectations, edaphic conditions were not reflected in foliar nutrient concentrations but LMA was slightly higher in lower fertility soils. Overall, each vegetation type within the ecotones demonstrated idiosyncratic and generally weak relationships between Vcmax25 and Narea, Parea and Karea. Species varied significantly in their Vcmax25 ↔ Narea relationship due to reduced investment of total Narea in photosynthetic machinery with increasing LMA. We suggest that studied species in the forest-savanna ecotones do not maximize Vcmax25 per given total Narea due to adaptation to intermittent water availability. Our findings have implications for global modeling of Vcmax25 and forest-savanna ecotone productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpy117DOI Listing

Publication Analysis

Top Keywords

photosynthetic capacity
12
relation soil
8
soil foliar
8
foliar nutrients
8
forest-savanna boundaries
8
ghana brazil
8
narea parea
8
parea karea
8
forest-savanna ecotones
8
total narea
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!