Spanning nearly 13,000 km, the Palearctic region provides an opportunity to examine the level of geographic coverage required for a DNA barcode reference library to be effective in identifying species with broad ranges. This study examines barcode divergences between populations of 102 species of Lepidoptera from Europe and South Siberia, sites roughly 6,000 km apart. While three-quarters of these species showed divergence between their Asian and European populations, these divergence values ranged between 0-1%, distinctly less than the distance to the Nearest-Neighbor species in all but a few cases. Our results suggest that further taxonomic studies may be required for 16 species that showed either extremely low interspecific or high intraspecific variation. For example, seven species pairs showed low or no barcode divergence, but four of these cases are likely to reflect taxonomic over-splitting while the others involve species pairs that are either young or show evidence for introgression. Conversely, some of the nine species with deep intraspecific divergence at varied spatial levels may include overlooked species. Although these 16 cases require further investigation, our overall results indicate that barcode reference libraries based on records from one locality can be very effective in identifying specimens across an extensive geographic area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214556 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206668 | PLOS |
iScience
January 2025
Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.
Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.
View Article and Find Full Text PDFiScience
January 2025
Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
The recognition of conspecifics, animals of the same species, and keeping track of changes in the social environment is essential to all animals. While molecules, circuits, and brain regions that control social behaviors across species are studied in-depth, the neural mechanisms that enable the recognition of social cues are largely obscure. Recent evidence suggests that social cues across sensory modalities converge in a thalamic area conserved across vertebrates.
View Article and Find Full Text PDFiScience
January 2025
Department of Biology, New Mexico State University, Las Cruces, NM, USA.
Forest edges, where humans, mosquitoes, and wildlife interact, may serve as a nexus for zoonotic arbovirus exchange. Although often treated as uniform interfaces, the landscape context of edge habitats can greatly impact ecological interactions. Here, we investigated how the landscape context of forest edges shapes mosquito community structure in an Amazon rainforest reserve near the city of Manaus, Brazil, using hand-nets to sample mosquitoes at three distinct forest edge types.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFChem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!