Y chromosomes are widely believed to evolve from a normal autosome through a process of massive gene loss (with preservation of some male genes), shaped by sex-antagonistic selection and complemented by occasional gains of male-related genes. The net result of these processes is a male-specialized chromosome. This might be expected to be an irreversible process, but it was found in 2005 that the Drosophila pseudoobscura Y chromosome was incorporated into an autosome. Y chromosome incorporations have important consequences: a formerly male-restricted chromosome reverts to autosomal inheritance, and the species may shift from an XY/XX to X0/XX sex-chromosome system. In order to assess the frequency and causes of this phenomenon we searched for Y chromosome incorporations in 400 species from Drosophila and related genera. We found one additional large scale event of Y chromosome incorporation, affecting the whole montium subgroup (40 species in our sample); overall 13% of the sampled species (52/400) have Y incorporations. While previous data indicated that after the Y incorporation the ancestral Y disappeared as a free chromosome, the much larger data set analyzed here indicates that a copy of the Y survived as a free chromosome both in montium and pseudoobscura species, and that the current Y of the pseudoobscura lineage results from a fusion between this free Y and the neoY. The 400 species sample also showed that the previously suggested causal connection between X-autosome fusions and Y incorporations is, at best, weak: the new case of Y incorporation (montium) does not have X-autosome fusion, whereas nine independent cases of X-autosome fusions were not followed by Y incorporations. Y incorporation is an underappreciated mechanism affecting Y chromosome evolution; our results show that at least in Drosophila it plays a relevant role and highlight the need of similar studies in other groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235401 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1007770 | DOI Listing |
Theor Appl Genet
January 2025
Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
In tetraploid F1 populations, traditional segregation distortion tests often inaccurately flag SNPs due to ignoring polyploid meiosis processes and genotype uncertainty. We develop tests that account for these factors. Genotype data from tetraploid F1 populations are often collected in breeding programs for mapping and genomic selection purposes.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
Conjugation plays a major role in dissemination of antimicrobial resistance genes. Following transfer of IncF-like plasmids, recipients become refractory to a second wave of conjugation with the same plasmid via entry (TraS) and surface (TraT) exclusion mechanisms. Here, we show that TraT from the pKpQIL and F plasmids (TraT and TraT) exhibits plasmid surface exclusion specificity.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA. Electronic address:
The QTL by environment interaction (Q×E) effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a novel linear mixed model that simultaneously analyzes data from multiple environments to detect Q×E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects.
View Article and Find Full Text PDFSci Data
January 2025
Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
This study presents the first chromosome-level genome assembly of the Korean long-tailed chicken (KLC), a unique breed of Gallus gallus known as Ginkkoridak. Our assembly achieved a super contig N50 of 5.7 Mbp and a scaffold N50 exceeding 90 Mb, with a genome completeness of 96.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands.
Background: The 5-year prognosis of non-high-risk neuroblastomas is generally good (>90%). However, a proportion of patients show progression and succumb to their disease. We aimed to identify molecular aberrations (not incorporated in the current risk stratification) associated with overall survival (OS) and/or event-free survival (EFS) in patients diagnosed with non-high-risk neuroblastoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!