Two subpopulations of muscle sympathetic single units with opposite discharge characteristics have been identified during low-level cardiopulmonary baroreflex loading and unloading in middle-aged adults and patients with heart failure. The present study sought to determine whether similar subpopulations are present in young healthy adults during cardiopulmonary baroreflex unloading ( study 1) and rhythmic handgrip exercise ( study 2). Continuous hemodynamic and multiunit and single unit muscle sympathetic nerve activity (MSNA) data were collected at baseline and during nonhypotensive lower body negative pressure (LBNP; n = 12) and 40% maximal voluntary contraction rhythmic handgrip exercise (RHG; n = 24). Single unit MSNA responses were classified as anticipated or paradoxical based on whether changes were concordant or discordant with the multiunit MSNA response, respectively. LBNP and RHG both increased multiunit MSNA burst frequency (∆5 ± 3 bursts/min, P < 0.001; ∆5 ± 8 bursts/min, P = 0.005), burst amplitude (∆5 ± 7%, P = 0.04; ∆13 ± 14%, P < 0.001), and total MSNA (∆302 ± 191 AU/min, P = 0.001; ∆585 ± 556 AU/min, P < 0.001). During LBNP and RHG, 43 and 64 muscle single units were identified, respectively, which increased spike frequency (∆9 ± 11 spikes/min, P < 0.001; ∆10 ± 19 spikes/min, P < 0.001) and the probability of multiple spike firing (∆10 ± 12%, P < 0.001; ∆11 ± 26%, P = 0.001). During LBNP and RHG, 36 (84%) and 39 (61%) single units possessed anticipated firing responses (∆12 ± 10 spikes/min, P < 0.001; ∆19 ± 19 spikes/min, P < 0.001), whereas 7 (16%) and 25 (39%) single units exhibited paradoxical reductions (∆-3 ± 1 spikes/min, P = 0.003; ∆-4 ± 5 spikes/min, P < 0.001). The observation of divergent subpopulations of muscle sympathetic single units in healthy young humans during two mild sympathoexcitatory stressors supports differential control at the fiber level as a fundamental characteristic of human sympathetic regulation. NEW & NOTEWORTHY The activity of muscle sympathetic single units was recorded during cardiopulmonary baroreceptor unloading and rhythmic handgrip exercise in young healthy humans. During both stressors, the majority of single units (84% and 61%) exhibited anticipated behavior concordant with the integrated muscle sympathetic response, whereas a smaller proportion (16% and 39%) exhibited paradoxical sympathoinhibition. These results support differential control of postganglionic muscle sympathetic fibers as a characteristic of human sympathetic regulation during mild sympathoexcitatory stress. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/differential-control-of-sympathetic-outflow-in-young-humans/ .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00675.2018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!