Spontaneous Calcium-Independent Dimerization of the Isolated First Domain of Neural Cadherin.

Biochemistry

Department of Chemistry and Biochemistry , Universityof Mississippi , University, Mississippi 38677 , United States.

Published: November 2018

Cadherins are calcium-dependent, transmembrane adhesion molecules that assemble through direct noncovalent association of their N-terminal extracellular modular domains. As the transmembrane component of adherens junctions, they indirectly link adherent cells' actin cytoskeletons. Here, we investigate the most distal extracellular domain of neural cadherin (N-cadherin), a protein required at excitatory synapses, the site of long-term potentiation. This domain is the site of the adhesive interface, and it forms a dimer spontaneously without binding calcium, a surprising finding given that calcium binding is required for proper physiological function. A critical tryptophan at position 2, W2, provides a spectroscopic probe for the "closed" monomer and strand-swapped dimer. Spectroscopic studies show that W2 remains docked in the two forms but has a different apparent interaction with the hydrophobic pocket. Size-exclusion chromatography was used to measure the levels of the monomer and dimer over time to study the kinetics and equilibria of the unexpected spontaneous dimer formation ( K = 130 μM; τ = 2 days at 4 °C). Our results support the idea that NCAD1 is missing critical contacts that facilitate the rapid exchange of the βA-strand. Furthermore, the monomer and dimer have equivalent and exceptionally high intrinsic stability for a 99-residue Ig-like domain with no internal disulfides ( T = 77 °C; Δ H = 85 kcal/mol). Ultimately, a complete analysis of synapse dynamics requires characterization of the kinetics and equilibria of N-cadherin. The studies reported here take a reductionist approach to understanding the essential biophysics of an atypical Ig-like domain that is the site of the adhesive interface of N-cadherin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.8b00733DOI Listing

Publication Analysis

Top Keywords

domain neural
8
neural cadherin
8
domain site
8
site adhesive
8
adhesive interface
8
monomer dimer
8
kinetics equilibria
8
ig-like domain
8
domain
5
dimer
5

Similar Publications

Exercising Self-Control Increases Responsivity to Hedonic and Eudaimonic Rewards.

Soc Cogn Affect Neurosci

January 2025

Centre for Research on Self and Identity, School of Psychology, University of Southampton, United Kingdom.

The reward responsivity hypothesis of self-control proposes that, irrespective of self-control success, exercising self-control is aversive and engenders negative affect. To countermand this discomfort, reward-seeking behavior may be amplified after bouts of self-control, bringing individuals back to a mildly positive baseline state. Previous studies indicated that effort-an integral component of self-control-can increase reward responsivity.

View Article and Find Full Text PDF

Power spectral analysis of voltage-gated channels in neurons.

Front Neuroinform

January 2025

Centre Borelli, Université Paris Cité, UMR 9010, CNRS, Paris, France.

This article develops a fundamental insight into the behavior of neuronal membranes, focusing on their responses to stimuli measured with power spectra in the frequency domain. It explores the use of linear and nonlinear (quadratic sinusoidal analysis) approaches to characterize neuronal function. It further delves into the random theory of internal noise of biological neurons and the use of stochastic Markov models to investigate these fluctuations.

View Article and Find Full Text PDF

Evidence for a shared cognitive mechanism underlying relative rhythmic and melodic perception.

Front Psychol

January 2025

Department of Behavioral and Cognitive Biology, Vienna CogSciHub, University of Vienna, Vienna, Austria.

Musical melodies and rhythms are typically perceived in a relative manner: two melodies are considered "the same" even if one is shifted up or down in frequency, as long as the relationships among the notes are preserved. Similar principles apply to rhythms, which can be slowed down or sped up proportionally in time and still be considered the same pattern. We investigated whether humans perceiving rhythms and melodies may rely upon the same or similar mechanisms to achieve this relative perception.

View Article and Find Full Text PDF

Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network.

View Article and Find Full Text PDF

Air pollution is a critical global environmental issue, further exacerbated by rapid industrialization and urbanization. Accurate prediction of air pollutant concentrations is essential for effective pollution prevention and control measures. The complex nature of pollutant data is influenced by fluctuating meteorological conditions, diverse pollution sources, and propagation processes, underscores the crucial importance of the spatial and temporal feature extraction for accurately predicting air pollutant concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!