Cadherins are calcium-dependent, transmembrane adhesion molecules that assemble through direct noncovalent association of their N-terminal extracellular modular domains. As the transmembrane component of adherens junctions, they indirectly link adherent cells' actin cytoskeletons. Here, we investigate the most distal extracellular domain of neural cadherin (N-cadherin), a protein required at excitatory synapses, the site of long-term potentiation. This domain is the site of the adhesive interface, and it forms a dimer spontaneously without binding calcium, a surprising finding given that calcium binding is required for proper physiological function. A critical tryptophan at position 2, W2, provides a spectroscopic probe for the "closed" monomer and strand-swapped dimer. Spectroscopic studies show that W2 remains docked in the two forms but has a different apparent interaction with the hydrophobic pocket. Size-exclusion chromatography was used to measure the levels of the monomer and dimer over time to study the kinetics and equilibria of the unexpected spontaneous dimer formation ( K = 130 μM; τ = 2 days at 4 °C). Our results support the idea that NCAD1 is missing critical contacts that facilitate the rapid exchange of the βA-strand. Furthermore, the monomer and dimer have equivalent and exceptionally high intrinsic stability for a 99-residue Ig-like domain with no internal disulfides ( T = 77 °C; Δ H = 85 kcal/mol). Ultimately, a complete analysis of synapse dynamics requires characterization of the kinetics and equilibria of N-cadherin. The studies reported here take a reductionist approach to understanding the essential biophysics of an atypical Ig-like domain that is the site of the adhesive interface of N-cadherin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.8b00733 | DOI Listing |
Soc Cogn Affect Neurosci
January 2025
Centre for Research on Self and Identity, School of Psychology, University of Southampton, United Kingdom.
The reward responsivity hypothesis of self-control proposes that, irrespective of self-control success, exercising self-control is aversive and engenders negative affect. To countermand this discomfort, reward-seeking behavior may be amplified after bouts of self-control, bringing individuals back to a mildly positive baseline state. Previous studies indicated that effort-an integral component of self-control-can increase reward responsivity.
View Article and Find Full Text PDFFront Neuroinform
January 2025
Centre Borelli, Université Paris Cité, UMR 9010, CNRS, Paris, France.
This article develops a fundamental insight into the behavior of neuronal membranes, focusing on their responses to stimuli measured with power spectra in the frequency domain. It explores the use of linear and nonlinear (quadratic sinusoidal analysis) approaches to characterize neuronal function. It further delves into the random theory of internal noise of biological neurons and the use of stochastic Markov models to investigate these fluctuations.
View Article and Find Full Text PDFFront Psychol
January 2025
Department of Behavioral and Cognitive Biology, Vienna CogSciHub, University of Vienna, Vienna, Austria.
Musical melodies and rhythms are typically perceived in a relative manner: two melodies are considered "the same" even if one is shifted up or down in frequency, as long as the relationships among the notes are preserved. Similar principles apply to rhythms, which can be slowed down or sped up proportionally in time and still be considered the same pattern. We investigated whether humans perceiving rhythms and melodies may rely upon the same or similar mechanisms to achieve this relative perception.
View Article and Find Full Text PDFNat Biotechnol
January 2025
Department of Automation, Tsinghua University, Beijing, China.
Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network.
View Article and Find Full Text PDFSci Rep
January 2025
School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing, 100055, China.
Air pollution is a critical global environmental issue, further exacerbated by rapid industrialization and urbanization. Accurate prediction of air pollutant concentrations is essential for effective pollution prevention and control measures. The complex nature of pollutant data is influenced by fluctuating meteorological conditions, diverse pollution sources, and propagation processes, underscores the crucial importance of the spatial and temporal feature extraction for accurately predicting air pollutant concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!