Clusters are unique molecular species that can be viewed as a bridge between phases of matter and thus between disciplines of chemistry. The structural and compositional complexity observed in cluster chemistry serves as an inspiration to the material science community and motivates our search for new phases of matter. Moreover, the formation of kinetically persistent cluster molecules as intermediates in the nucleation of crystals makes these materials of great interest for determining and controlling mechanisms of crystal growth. Our lab developed a keen interest in clusters insofar as they relate to the nucleation of nanoscale semiconductors and the modeling of postsynthetic reaction chemistry of colloidal materials. In particular, our discovery of a structurally unique InPX (X = carboxylate) cluster en route to InP quantum dots has catalyzed our interest in all aspects of cluster conversion, including the use of clusters as precursors to larger nanoscale colloids and as platforms for examining postsynthetic reaction chemistry. This Account is presented in four parts. First, we introduce cluster chemistry in a historical context with a focus on main group, metallic, and semiconductor clusters. We put forward the concept of rational, mechanism-driven design of colloidal semiconductor nanocrystals as the primary motivation for the studies we have undertaken. Second, we describe the role of clusters as intermediates both in the synthesis of well-known material phases and in the discovery of unprecedented nanomaterial structures. The primary distinction between these two approaches is one of kinetics; in the case of well-known phases, we are often operating under high-temperature thermolysis conditions, whereas for materials discovery, we are discovering strategies to template the growth of kinetic phases as dictated by the starting cluster structure. Third, we describe reactions of clusters as model systems for their larger nanomaterial progeny with a primary focus on cation exchange. In the case of InP, cation exchange in larger nanostructures has been challenging due to the covalent nature of the crystal lattice. However, in the higher energy, strained cluster intermediates, cation exchange can be accomplished even at room temperature. This opens opportunities for accessing doped and alloyed nanomaterials using postsynthetically modified clusters as single-source precursors. Finally, we present surface chemistry of clusters as the gateway to subsequent chemistry and reactivity, and as an integral component of cluster structure and stability. Taken as a whole, we hope to make a compelling case for using clusters as a platform for mechanistic investigation and materials discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.8b00365 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!