Increasingly serious electromagnetic radiation pollution puts higher demands on wearable devices. Electronic sensor skin capable of shielding electromagnetic radiation can provide extra protection in emerging fields such as electronic skins, robotics, and artificial intelligence, but combining the sensation and electromagnetic shielding performance together remains a great challenge. Here, inspired by the structure and functions of the human skin, a multifunctional electronic skin (M-E-skin) with both tactile sensing and electromagnetic radiation shielding functions is proposed. The tactile sensing of human skin is mimicked with irregular dermislike rough surfaces, and the electromagnetic shielding performance not available on natural skin is introduced by mimicking the ultraviolet electromagnetic radiation absorption of melanin in epidermis. The M-E-skin shows superior sensitivity (9.8 × 10 kPa for the pressure range 0-0.2 kPa and 3.5 × 10 kPa within 0.2-20 kPa), broad operating range (0-20 kPa), fast response and relaxation times (<62.5 ms), great pressuring-relaxing stability (10 kPa, 1000 cycles), low operating voltage (0.1 V), low power consumption (1.5 nW), and low detection limit (5 Pa). Besides, a broad range of electromagnetic wave (0.5-7.5 GHz) is shielded more than 99.66% by the M-E-skin. This work holds great potential to enlarge the application scope of current electronic skins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b15809 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Zhenjiang College, Zhenjiang, 212000, PR China.
Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.
ACS Nano
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Afe Babalola University, Ado-Ekiti, Nigeria.
Background: Prolonged exposure to LED-light has been associated with impaired sleep quality and pathogenesis of various diseases, including Alzheimer's Disease (AD). Red light therapy has been indicated as a non-invasive way of reducing anxiety, mood and sleep optimization in neurodegenerative disorders but its endogenous mechanisms are insufficiently comprehended. Hence, we assessed the effects of scheduled red-light exposure on clock genes-Bmal1 and Per 1 expression, feacal boli frequency, and anxiety-like responses in prolonged LED-light exposed rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!