Small-molecule organic semiconductors exhibit great potential for the photoelectrochemical oxidation of water because of their n-type semiconductor nature and their tunable bandgaps. In this work, several head-to-tail bis-coumarins were synthesized and their photophysical properties characterized. Their characteristics as n-type semiconductors were modified by varying the electronic character of substituents at positions 1 and 7, which enabled the energy level of the LUMO and the photoinduced charge-carrier-transfer efficiency to be modulated. X-Ray absorption near-edge structure (XANES) spectroscopy confirmed that the charge transfer is a crucial factor contributing to the resulting activity of the photoanode. The photoactivity of the photoanodes towards water oxidation was revealed to be governed by both the LUMO energy level and transfer efficiency of the photoinduced charge carriers. Among the studied molecules, a bis-coumarin with benzothiophenyl substituents showed the greatest potential as light absorber for photoelectrochemical water oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201804829DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
8
energy level
8
water oxidation
8
π-conjugated organic-inorganic
4
organic-inorganic hybrid
4
hybrid photoanodes
4
photoanodes revealing
4
revealing photochemical
4
photochemical behavior
4
behavior situ
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!