Glycosyltrehalose synthase (GTSase) converts the glucosidic bond between the last two glucose residues of amylose from an α-1,4 bond to an α-1,1 bond, generating a nonreducing glycosyl trehaloside, in the first step of the biosynthesis of trehalose. To better understand the structural basis of the catalytic mechanism, the crystal structure of GTSase from the hyperthermophilic archaeon Sulfolobus shibatae DSM5389 (5389-GTSase) has been determined to 2.4 Å resolution by X-ray crystallography. The structure of 5389-GTSase can be divided into five domains. The central domain contains the (β/α)-barrel fold that is conserved as the catalytic domain in the α-amylase family. Three invariant catalytic carboxylic amino acids in the α-amylase family are also found in GTSase at positions Asp241, Glu269 and Asp460 in the catalytic domain. The shape of the catalytic cavity and the pocket size at the bottom of the cavity correspond to the intramolecular transglycosylation mechanism proposed from previous enzymatic studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213983 | PMC |
http://dx.doi.org/10.1107/S2053230X1801453X | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.
View Article and Find Full Text PDFCell Rep
January 2025
Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark.
The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!