Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lung cancer is the type of cancer that most often kills after the initial diagnosis. To aid the specialist in its diagnosis, temporal evaluation is a potential tool for analyzing indeterminate lesions, which may be benign or malignant, during treatment. With this goal in mind, a methodology is herein proposed for the analysis, quantification, and visualization of changes in lung lesions. This methodology uses a modified version of the quality threshold clustering algorithm to associate each voxel of the lesion to a cluster, and changes in the lesion over time are defined in terms of voxel moves to another cluster. In addition, statistical features are extracted for classification of the lesion as benign or malignant. To develop the proposed methodology, two databases of pulmonary lesions were used, one for malignant lesions in treatment (public) and the other for indeterminate cases (private). We determined that the density change percentage varied from 6.22% to 36.93% of lesion volume in the public database of malignant lesions under treatment and from 19.98% to 38.81% in the private database of lung nodules. Additionally, other inter-cluster density change measures were obtained. These measures indicate the degree of change in the clusters and how each of them is abundant in relation to volume. From the statistical analysis of regions in which the density changes occurred, we were able to discriminate lung lesions with an accuracy of 98.41%, demonstrating that these changes can indicate the true nature of the lesion. In addition to visualizing the density changes occurring in lesions over time, we quantified these changes and analyzed the entire set through volumetry, which is the technique most commonly used to analyze changes in pulmonary lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2018.2878954 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!