Artificial neural networks have been recently introduced as a general ansatz to represent many-body wave functions. In conjunction with variational Monte Carlo calculations, this ansatz has been applied to find Hamiltonian ground states and their energies. Here, we provide extensions of this method to study excited states, a central task in several many-body quantum calculations. First, we give a prescription that allows us to target eigenstates of a (nonlocal) symmetry of the Hamiltonian. Second, we give an algorithm to compute low-lying excited states without symmetries. We demonstrate our approach with both restricted Boltzmann machines and feed-forward neural networks. Results are shown for the one-dimensional spin-1/2 Heisenberg model, and for the one-dimensional Bose-Hubbard model. When comparing to exact results, we obtain good agreement for a large range of excited-states energies. Interestingly, we find that deep networks typically outperform shallow architectures for high-energy states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.167204 | DOI Listing |
BMC Bioinformatics
January 2025
Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital of Capital Medical University, Beijing, 101100, China.
Background: MicroRNAs (miRNAs) are pivotal in the initiation and progression of complex human diseases and have been identified as targets for small molecule (SM) drugs. However, the expensive and time-intensive characteristics of conventional experimental techniques for identifying SM-miRNA associations highlight the necessity for efficient computational methodologies in this field.
Results: In this study, we proposed a deep learning method called Multi-source Data Fusion and Graph Neural Networks for Small Molecule-MiRNA Association (MDFGNN-SMMA) to predict potential SM-miRNA associations.
BMC Cancer
January 2025
Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.
Background: Melanoma is a highly aggressive skin cancer, where early and accurate diagnosis is crucial to improve patient outcomes. Dermoscopy, a non-invasive imaging technique, aids in melanoma detection but can be limited by subjective interpretation. Recently, machine learning and deep learning techniques have shown promise in enhancing diagnostic precision by automating the analysis of dermoscopy images.
View Article and Find Full Text PDFEur Phys J E Soft Matter
January 2025
Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Bavaria, Germany.
We employ graph neural networks (GNN) to analyse and classify physical gel networks obtained from Brownian dynamics simulations of particles with competing attractive and repulsive interactions. Conventionally such gels are characterized by their position in a state diagram spanned by the packing fraction and the strength of the attraction. Gel networks at different regions of such a state diagram are qualitatively different although structural differences are subtile while dynamical properties are more pronounced.
View Article and Find Full Text PDFSci Rep
January 2025
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.O. Box: 16765-163, Tehran, Iran.
In this study, Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were developed to estimate the equilibrium solubility and partial pressure of CO in blended aqueous solutions of diisopropanolamine (DIPA) and 2-amino-2-methylpropanol (AMP). In this study, several key parameters were analyzed to understand the behavior of the aqueous DIPA/AMP system for CO capture. Including DIPA (9-21 wt%), AMP (9-21 wt%), temperature (323.
View Article and Find Full Text PDFSurg Endosc
January 2025
Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
Objectives: This study aimed to develop an automated skills assessment tool for surgical trainees using deep learning.
Background: Optimal surgical performance in robot-assisted surgery (RAS) is essential for ensuring good surgical outcomes. This requires effective training of new surgeons, which currently relies on supervision and skill assessment by experienced surgeons.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!