Stress during early development can induce substantial long-term effects in organisms. In the case of birds, despite growth compensations, nestlings reared under harsh conditions typically show reduced survival chances in adulthood. It has been proposed that environmental early-life stressors could affect longevity via effects on telomere length, possibly mediated through oxidative stress. However, the link between these processes is not clear. In this study, we experimentally manipulated brood size in spotless starlings (Sturnus unicolor) to test the causal relationship between early stress, oxidative and corticosterone-mediated stress and telomere shortening. Our results show that experimentally enlarged brood sizes led to a reduction in morphometric development on nestlings, the effect being stronger for females than males. Additionally, basal corticosterone levels increased with increasing brood size in female nestlings. Neither plasma antioxidant status nor malondialdehyde levels (a marker of lipid peroxidation) were affected by experimental brood size, although the levels of a key intracellular antioxidant (glutathione) decreased with increasing brood size. We found that the treatment showed a quadratic effect on nestling telomere lengths: these were shortened either by increases or by decreases in the original brood size. Our study provides experimental evidence for a link between developmental stress and telomere length, but does not support a direct causal link of this reduction with corticosterone or oxidative stress. We suggest that future studies should focus on how telomere length responds to additional markers of allostatic load.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jeb.13396 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China.
Background: ) is a plant with known medicinal properties, and its extracts have shown promise as potential anti-cancer agents. This study aimed to evaluate the nematocidal effects of L. patula extracts and investigate their impact on germline development, DNA damage responses, and apoptosis in ), a model organism for studying these processes.
View Article and Find Full Text PDFInsects
January 2025
Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
The size of comb cells is a key factor influencing the body size of honey bee workers. Comb cells and the body size of Chinese honey bee workers are smaller than those of Italian honey bee workers. To increase the size of Chinese honey bee workers, this study used newly built combs from Chinese honey bee colonies (control group) and Italian honey bee colonies (treatment group).
View Article and Find Full Text PDFInsects
January 2025
Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
Italian honey bees (IHBs, ) exhibit superior comb-building abilities compared with Chinese honey bees (CHBs, ), which often fail to fully utilize wax foundations, resulting in incomplete comb structures. The present study aimed to accelerate comb construction in CHB colonies using IHBs. In the experiment, IHB colonies, each with approximately 42,000 adult workers, required over four hours to construct a semi-drawn comb on CHB wax foundations.
View Article and Find Full Text PDFBMC Genomics
January 2025
Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, 710032, China.
Background: The relict gull (Larus relictus, Charadriiformes, Laridae) classified as vulnerable in the IUCN Red List is defined as a first-class national protected bird in China. However, our knowledge of the evolutionary history of L. relictus is limited.
View Article and Find Full Text PDFEcology
January 2025
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
Optimal nest site selection is crucial in animals whose offspring are completely dependent on the shelter of a nest. Parental decisions influencing nest thermal conditions are particularly important because temperature strongly influences juvenile activity, metabolism, growth, developmental rate, survival, and adult body size. In small ectotherms such as bees, maternal decisions to nest in sun-exposed or shady sites can lead to marked differences in thermal microenvironments inside nests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!