Simultaneous intercalated assembly of mesostructured hybrid carbon nanofiber/reduced graphene oxide and its use in electrochemical sensing.

Nanotechnology

Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P. 66455, San Nicolás de los Garza, N.L., Mexico.

Published: January 2019

Polyacrylonitrile nonwovens intercalated with graphene oxide (GO) sheets were prepared by a simultaneous electrospinning-spray deposition system. These hybrid nonwovens were carbonized in a two-stage process to obtain a mesostructured hybrid carbon containing carbon nanofibers (CNF) and reduced GO sheets (CNF/RGO). During the carbonization process, the CNF act as spacers between the RGO layers to prevent their compactation and restacking resulting in a three-dimensional structure. The presence of RGO increases the electrical conductivity in the CNF/RGO material. The resulting hybrid carbon is nitrogen-doped as indicated by x-ray photoelectron spectroscopy and Fourier transformed infrared spectroscopy. This N-doped porous carbon was used to prepare electrodes with improved sensitivity for the electrochemical detection of L-cysteine.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aae879DOI Listing

Publication Analysis

Top Keywords

hybrid carbon
12
mesostructured hybrid
8
graphene oxide
8
carbon
5
simultaneous intercalated
4
intercalated assembly
4
assembly mesostructured
4
hybrid
4
carbon nanofiber/reduced
4
nanofiber/reduced graphene
4

Similar Publications

Integrating mixed electron donor (D) and electron acceptor (A) ligands into metal-organic frameworks (MOFs) is an effective yet relatively unexplored approach for improving the anode performance of hybrid lithium-ion capacitors (HLICs). In this study, using an electron donor 2,6-bis(4'-pyridyl)tetrathiafulvalene and an electron acceptor ,'-bis(5-isophthalic acid) naphthalene diimide as ligands, a new Zn-TTF/NDI MOF () is constructed as a pseudocapacitive anode of HLICs. Crystallographic characterization revealed that MOF adopts a two-dimensional (2D) coordination network.

View Article and Find Full Text PDF

Recycled aggregate concrete (RAC), which is made by replacing all natural coarse and fine aggregates with recycled aggregate, plays a significant role in improving the recycling rate of construction materials, reducing carbon emissions from construction, and alleviating ecological degradation issues. However, due to its low strength and significant shrinkage and deformation problems, RAC has limited application. The effort of fiber type, fiber admixture, and fiber hybridization on autogenous shrinkage were studied to improve the structural safety of building materials and broaden the application of RAC.

View Article and Find Full Text PDF

Fiber-reinforced composites are widely utilized across various industries, including aerospace, automotive, and marine, due to their outstanding mechanical properties and lightweight characteristics. Natural fibers, as promising reinforcements, have the potential to replace synthetic fibers in certain areas to meet the growing demand for environmental protection and sustainability. These biocomposites offer numerous benefits, including reduced carbon footprints, diminished reliance on non-renewable resources, and increased natural biodegradability.

View Article and Find Full Text PDF

Differential Effects of Adding Graphene Nanoplatelets on the Mechanical Properties and Crystalline Behavior of Polypropylene Composites Reinforced with Carbon Fiber or Glass Fiber.

Materials (Basel)

February 2025

Department of Applied Mechanics and Aerospace Engineering, School of Fundamental Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

Short fiber-reinforced thermoplastic composites (SFRTPs) have excellent recyclability and processability, but their mechanical properties are weak compared to continuous fiber products. Various studies have reported that the addition of GNPs improves the mechanical properties of SFRTPs, but it is unclear what effect different types of reinforcing fibers have on a hybrid composite system. In this study, the effect of adding a small amount (1 wt%) of graphene nanoplatelets (GNPs) to fiber-reinforced polypropylene composites on their mechanical properties was investigated from a crystallinity perspective.

View Article and Find Full Text PDF

Magnetic Ionic Liquid: A Multifunctional Platform for the Design of Hybrid Graphene/Carbon Nanotube Networks as Electromagnetic Wave-Absorbing Materials.

Molecules

February 2025

Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, CEDEX F-69621 Villeurbanne, France.

Magnetic ionic liquid (MIL) based on alkyl phosphonium cation was used as a curing agent for developing epoxy nanocomposites (ENCs) modified with a graphene nanoplatelet (GNP)/carbon nanotube (CNT) hybrid filler. The materials were prepared by a solvent-free procedure involving ball-milling technology. ENCs containing as low as 3 phr of filler (GNP/CNT = 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!