Premise Of The Study: Tree peony (; Paeoniaceae) is well known for its ornamental value, edible oil, and medicinal properties. However, its growing area has been limited by drought that has been exacerbated by global climate change.

Methods: Gene expression profiles of a drought-tolerant cultivar and a drought-sensitive cultivar during dehydration and rehydration were investigated by transcriptome analysis. Expression patterns of unigenes related to drought and recovery response and unrelated to either cultivar were classified by hierarchical clustering and real-time quantitative PCR (qPCR).

Results: A total of 81,725 unigenes with a mean length of 762 nucleotides that may play roles in drought response were identified. Unigenes were characterized as being involved in lipid transport metabolism, proline metabolism, and photosynthesis. In addition, plant hormone signaling pathway genes were also characterized as potentially being involved in drought response. Expression patterns of the 20 drought-responsive unigenes verified by qPCR showed a differential expression pattern under either the drought or recovery treatment.

Discussion: This is the first report to identify and verify unigenes of tree peonies with differing water sensitivity during dehydration and rehydration. This study offers a valuable resource for candidate genes involved in drought and provides insight into the breeding of drought-resistant tree peony cultivars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201725PMC
http://dx.doi.org/10.1002/aps3.1191DOI Listing

Publication Analysis

Top Keywords

tree peony
12
peony paeoniaceae
8
dehydration rehydration
8
expression patterns
8
drought recovery
8
drought response
8
characterized involved
8
involved drought
8
drought
6
unigenes
5

Similar Publications

Tree peony seeds, traditionally used for edible oil production, are rich in α-linolenic acid (ALA). However, little attention is paid to their development as a healthcare food due to their bitter and astringent taste. The aim of this study was to optimize the debittering process of peony seeds on the basis of maintaining nutritional value and to identify the compounds that cause the taste of bitterness.

View Article and Find Full Text PDF

Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation.

View Article and Find Full Text PDF

Genome-wide analysis of GRAS gene family and functional identification of a putative development and maintenance of axillary meristematic tissue gene PlGRAS22 in Paeonia ludlowii.

Int J Biol Macromol

January 2025

School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:

The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.

View Article and Find Full Text PDF

Sucrose is an essential energy substance for tree peony (Paeonia Suffruticosa) floral organ development. However, little is known about the sucrose regulatory network in tree peony. In this study, the promoter sequence of the tree peony sucrose transporter gene PsSUT2 was cloned.

View Article and Find Full Text PDF

Paeonia suffruticosa is a plant of Paeonia in Paeoniaceae. It is an important woody ornamental flower in the world. High temperature in summer hinders the growth of tree peony and reduces its ornamental quality, which restricts the cultivation and application of tree peony in Jiangnan area of China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!