Dendritic cells (DCs) are crucial players in promoting immune responses. Logically, adoptive DC therapy is a promising approach in cancer immunotherapy. One of the major obstacles in cancer immunotherapy in general is the immunosuppressive tumor microenvironment, which hampers the maturation and activation of DCs. Therefore, human clinical outcomes with DC therapy alone have been disappointing. In this study, we use fully serotype 3 oncolytic adenovirus Ad3-hTERT-CMV-hCD40L, expressing human CD40L, to modulate the tumor microenvironment with subsequently improved function of DCs. We evaluated the synergistic effects of Ad3-hTERT-CMV-hCD40L and DCs in the presence of human peripheral blood mononuclear cells and . Tumors treated with Ad3-hTERT-CMV-hCD40L and DCs featured greater antitumor effect compared with unarmed virus or either treatment alone. 100% of humanized mice survived to the end of the experiment, while mice in all other groups died by day 88. Moreover, adenovirally-delivered CD40L induced activation of DCs, leading to induction of Th1 immune responses. These results support clinical trials with Ad3-hTERT-CMV-hCD40L in patients receiving DC therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207416 | PMC |
http://dx.doi.org/10.1080/2162402X.2018.1490856 | DOI Listing |
Expert Opin Biol Ther
January 2025
Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Introduction: Approximately 75% of bladder cancer cases are non-muscle invasive at diagnosis. Drug development for non-muscle invasive bladder cancer (NMIBC) has historically lagged behind that of other malignancies. No treatment has demonstrated the ability to overcome drug resistance that ultimately leads to recurrence and progression.
View Article and Find Full Text PDFMol Ther Oncol
December 2024
Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
Oncolytic viruses (OVs) are a promising therapeutic approach for cancer, although their systemic administration faces significant challenges. Mesenchymal stem cells have emerged as potential carriers to overcome these obstacles due to their tumor-tropic properties. This study investigates the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as carriers for OVs in cancer therapy, focusing on enhancing their efficacy through different culture conditions.
View Article and Find Full Text PDFMol Ther Oncol
December 2024
Department of Gene Therapy, Ulm University, 89081 Ulm, Germany.
J Neurooncol
December 2024
Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA.
Purpose: This systematic review aimed to collate and synthesize the available literature on the abscopal effect in Glioblastoma multiforme (GBM) neoplasms, focusing on the reported biochemical mechanisms driving the abscopal effect.
Methods: A systematic search was conducted in PubMed, Cochrane Database of Systematic Reviews, and Epistemonikos from inception to May 1, 2023. Studies exploring the abscopal effect in GBM were included.
Mol Ther
December 2024
State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China. Electronic address:
Tumor necrosis factor (TNF) has been recognized as an immune activation factor in tumor immunotherapy. Our study demonstrated that TNF blockade markedly enhanced the antitumor efficacy of oncolytic adenovirus (AdV) therapy. To minimize systemic side effects, we engineered a recombinant oncolytic AdV encoding a TNF inhibitor (AdV-TNFi) to confine TNF blockade within the tumor microenvironment (TME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!