Breeding for disease resistance is a challenging but increasingly necessary objective to overcome the issues with the reduced use of antibiotics and growing concern for animal welfare while limiting economic losses. However, implementing such strategies is a complex process because animals face numerous diseases, and the environments on selection farms differ from those on commercial farms. We evaluated whether selection for resistance to non-specific diseases based on a single visual record in selection (S) and challenging (Ch) environments is possible. Records from 23,773 purebred rabbits born between 2012 and 2016 were used in this study. After weaning (at 32 days of age), 17,712 rabbits were raised in the S environment and 6,061 sibs were raised in the Ch environment. Clinical signs of disease were recorded for all animals at the end of the test, at a single time point, at 70 or 80 days of age. The causes of mortality occurring before the end of the test were also recorded. Three disease traits were analyzed: signs of respiratory disease, signs of digestive disease, and a composite trait (Resist) taking into account signs of digestive, respiratory and various infectious diseases. This latter composite trait is proposed to capture the global resistance to disease. All disease traits were binary, with 0 being the absence of symptoms. Two production traits were also recorded: the number of kits born alive (4,121 litters) and the weaning weight (13,090 rabbits). Disease traits were analyzed with animal threshold models, assuming that traits are different in the two environments. Bivariate analyses were carried out using linear animal models. The heritabilities of the disease traits ranged from 0.04 ± 0.01 to 0.11 ± 0.03. The genetic correlations between disease traits in both environments were below unity (≤ 0.84), indicating genotype by environment interactions. Most of the genetic correlations between disease and production traits were not significantly different from zero, except between the weaning weight and Resist_S, with a favorable correlation of -0.34 ± 0.12. Given these genetic parameters, for the same level of exposure of rabbits to pathogens, the expected response to selection is a reduction of disease incidence of 4-6% per generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198044PMC
http://dx.doi.org/10.3389/fgene.2018.00467DOI Listing

Publication Analysis

Top Keywords

disease traits
20
production traits
12
disease
12
traits
9
genetic parameters
8
resistance non-specific
8
non-specific diseases
8
days age
8
raised environment
8
traits analyzed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!