Metabolic impairments associated with obstructive sleep apnea syndrome (OSA) are linked to tissue hypoxia, however, the explanatory molecular and endocrine mechanisms remain unknown. Using gas-permeable cultureware, we studied the chronic effects of mild and severe hypoxia on free fatty acid (FFA) uptake, storage, and oxidation in L6 myotubes under 20, 4, or 1% O. Additionally, the impact of metformin and the peroxisome proliferator-activated receptor (PPAR) β/δ agonist, called GW501516, were investigated. Exposure to mild and severe hypoxia reduced FFA uptake by 37 and 32%, respectively, while metformin treatment increased FFA uptake by 39% under mild hypoxia. GW501516 reduced FFA uptake under all conditions. Protein expressions of CD36 (cluster of differentiation 36) and SCL27A4 (solute carrier family 27 fatty acid transporter, member 4) were reduced by 17 and 23% under severe hypoxia. Gene expression of UCP2 (uncoupling protein 2) was reduced by severe hypoxia by 81%. Metformin increased CD36 protein levels by 28% under control conditions and SCL27A4 levels by 56% under mild hypoxia. Intracellular lipids were reduced by mild hypoxia by 18%, while in controls only, metformin administration further reduced intracellular lipids (20% O) by 36%. Finally, palmitate oxidation was reduced by severe hypoxia, while metformin treatment reduced non-mitochondrial O consumption, palmitate oxidation, and proton leak at all O levels. Hypoxia directly reduced FFA uptake and intracellular lipids uptake in myotubes, at least partially, due to the reduction in CD36 transporters. Metformin, but not GW501516, can increase FFA uptake and SCL27A4 expression under mild hypoxia. Described effects might contribute to elevated plasma FFA levels and metabolic derangements in OSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199370PMC
http://dx.doi.org/10.3389/fendo.2018.00616DOI Listing

Publication Analysis

Top Keywords

ffa uptake
24
severe hypoxia
20
mild hypoxia
16
hypoxia
12
fatty acid
12
reduced ffa
12
intracellular lipids
12
reduced
9
hypoxia metformin
8
uptake
8

Similar Publications

Background: Omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are polyunsaturated fatty acids (PUFAs) with notable health benefits. Due to limited physiological production and insufficient dietary supply, external supplementation is important.

Objective: This study aimed to compare the pharmacokinetics and bioavailability of EPA and DHA in AvailOm omega-3-lysine salt (Lys-FFA) versus standard ethyl ester (EE) and triglyceride (TG) formulations after a single oral dose in healthy subjects.

View Article and Find Full Text PDF

Mangiferin and EGCG Compounds Fight Against Hyperlipidemia by Promoting FFA Oxidation via AMPK/PPAR.

PPAR Res

December 2024

Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, Yunnan, China.

Hyperlipidemia is a critical risk factor for obesity, diabetes, cardiovascular diseases, and other chronic diseases. Our study was to determine the effects and mechanism of mangiferin (MF) and epigallocatechin gallate (EGCG) compounds on improving hyperlipidemia in HepG2 cells. HepG2 cells were treated with 0.

View Article and Find Full Text PDF

Ferulic acid improves palmitate-induced insulin resistance by regulating IRS-1/Akt and AMPK pathways in L6 skeletal muscle cells.

Toxicol Res (Camb)

December 2024

Department of Food Science and Nutrition, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.

Objective: Increased plasma-free fatty acid (FFA) induced by obesity can trigger insulin resistance and it is a significantly dangerous constituent in the progression of diabetes. Although ferulic acid has various physiological functions, no studies have examined ferulic acid's effects on insulin-resistant muscle cells. This study investigated the effect of ferulic acid on improving palmitic acid-induced insulin resistance in L6 skeletal muscle cells.

View Article and Find Full Text PDF

Background/objectives: The infiltration of macrophages into adipose tissue mediates chronic inflammation that is associated with insulin resistance in obesity. Although vitamin E is beneficial against insulin resistance, its impact on adipose tissue inflammation has not been elucidated. This study aims to investigate the effects of α-tocopherol and γ-tocopherol, major vitamin E isoforms, on the interaction between macrophages and adipocytes with regard to obesity-induced inflammation and insulin resistance.

View Article and Find Full Text PDF

Objectives: Dysregulation of lipid homeostasis pathway causes many liver diseases, including hepatic steatosis. One of the primary factors contributing to lipid accumulation is fatty acid uptake by the liver. Transmembrane protein 135 (TMEM135), which exists in mitochondria and peroxisomes, participates in intracellular lipid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!