Recent investigations of the treatment for hematologic neoplasms have focused on targeting epigenetic regulators. The DNA methyltransferase inhibitor 5-azacytidine (AZA) has produced good results in the treatment of patients with myelodysplastic syndromes. The mechanism underlying its pharmacological activity involves many cellular processes including histone modifications, but chromatin regulation in AZA-resistant cells is still largely unknown. Therefore, we compared human leukemia cells with AZA resistance and their AZA-sensitive counterparts with regard to the response of histone modifications and their readers to AZA treatment to identify novel molecular target(s) in hematologic neoplasms with AZA resistance. We observed an a decrease of HP1γ, a methylated lysine 9 of histone H3-specific reader protein, in AZA-sensitive cells after treatment, whereas AZA treatment did not affect HP1 family proteins in AZA-resistant cells. The expression of shRNA targeting HP1γ reduced viability and induced apoptosis specifically in AZA-resistant cells, which accompanied with down-regulation of ATM/BRCA1 signaling, indicating that chromatin regulation by HP1γ plays a key role in the survival of AZA-resistant cells. In addition, the amount of HP1γ protein in AZA-sensitive and AZA-resistant cells was decreased after treatment with the bromodomain inhibitor I-BET151 at a dose that inhibited the growth of AZA-resistant cells more strongly than that of AZA-sensitive cells. Our findings demonstrate that treatment with AZA, which affects an epigenetic reader protein and targets HP1γ, or a bromodomain inhibitor is a novel strategy that can be used to treat patients with hematopoietic neoplasms with AZA resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198088PMC
http://dx.doi.org/10.3389/fphar.2018.01166DOI Listing

Publication Analysis

Top Keywords

aza-resistant cells
24
chromatin regulation
12
aza resistance
12
cells
10
regulation hp1γ
8
hematologic neoplasms
8
histone modifications
8
aza treatment
8
neoplasms aza
8
reader protein
8

Similar Publications

Background: Venetoclax + azacitidine is a frontline treatment for older adult acute myeloid leukemia (AML) patients and a salvage therapy for relapsed/refractory patients who have been treated with intensive chemotherapy. While this is an important treatment option, many patients fail to achieve complete remission and of those that do, majority relapse. Leukemia stem cells (LSCs) are believed to be responsible for AML relapse and can be targeted through oxidative phosphorylation reduction.

View Article and Find Full Text PDF

5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA.

View Article and Find Full Text PDF

FUS-ERG induces late-onset azacitidine resistance in acute myeloid leukaemia cells.

Sci Rep

September 2023

Division of Gastroenterology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.

FUS-ERG is a chimeric gene with a poor prognosis, found in myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). It remains unclear whether DNA hypomethylating agents, including azacitidine (Aza), are effective in FUS-ERG-harbouring AML and how FUS-ERG induces chemoresistance. Stable Ba/F3 transfectants with FUS-ERG were repeatedly exposed to Aza for 7 days of treatment and at 21-day intervals to investigate Aza sensitivity.

View Article and Find Full Text PDF

Acquired resistance to venetoclax plus azacitidine in acute myeloid leukemia: In vitro models and mechanisms.

Biochem Pharmacol

October 2023

Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA. Electronic address:

The combination of venetoclax (VEN) and azacitidine (AZA) has become the standard of care for acute myeloid leukemia (AML) patients who are ≥ 75 years or unfit for intensive chemotherapy. Though initially promising, resistance to the combination therapy is an issue and VEN + AZA-relapsed/refractory patients have dismal outcomes. To better understand the mechanisms of resistance, we developed VEN + AZA-resistant AML cell lines, MV4-11/VEN + AZA-R and ML-2/VEN + AZA-R, which show > 300-fold persistent resistance compared to the parental lines.

View Article and Find Full Text PDF

Resistance of Leukemia Cells to 5-Azacytidine: Different Responses to the Same Induction Protocol.

Cancers (Basel)

June 2023

Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia.

Three AML cell variants (M/A, M/A* from MOLM-13 and S/A from SKM-1) were established for resistance by the same protocol using 5-azacytidine (AZA) as a selection agent. These AZA-resistant variants differ in their responses to other cytosine nucleoside analogs, including 5-aza-2'-deoxycytidine (DAC), as well as in some molecular features. Differences in global DNA methylation, protein levels of DNA methyltransferases, and phosphorylation of histone H2AX were observed in response to AZA and DAC treatment in these cell variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!