Paraoxonase 3 is involved in the multi-drug resistance of esophageal cancer.

Cancer Cell Int

1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.

Published: October 2018

AI Article Synopsis

Article Abstract

Background: Drug resistance prevents the effective treatment of cancers. DNA methylation has been found to participate in the development of cancer drug resistance.

Methods: We performed the wound-healing and invasion assays to test the effect of the paraoxonase gene PON3 on esophageal cancer (EC) cells. In addition, in vivo EC-derived tumor xenografts in nude mice were generated to test the effect of PON3 on the chemoresistance of EC cells.

Results: We found that PON3 is hypermethylated in drug-resistant EC cell line K150, which in-return down-regulates its expression. The following experiments by the forced changes of PON3 level in vitro and in vivo demonstrated that the PON3 expression negatively correlates with drug resistance in EC cells. Further wound-healing and invasion assays showed that PON3 suppresses the migration and invasion of EC cells.

Conclusion: Our data established that PON3 is associated with the EC drug resistance, which may serve as a biomarker for the potential therapeutic treatment of EC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198441PMC
http://dx.doi.org/10.1186/s12935-018-0657-1DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
esophageal cancer
8
wound-healing invasion
8
invasion assays
8
pon3
7
paraoxonase involved
4
involved multi-drug
4
resistance
4
multi-drug resistance
4
resistance esophageal
4

Similar Publications

The impact of heteroresistance on tuberculosis (TB) treatment outcomes is unclear, as is the role of different rifampin and isoniazid exposures on developing resistance mutations. Hollow fiber system model of TB (HFS-TB) units were inoculated with drug-susceptible () and treated with isoniazid and rifampin exposure identified in a clinical trial as leading to treatment failure and acquired drug resistance. Systems were sampled for drug concentration measurements, estimation of total and drug-resistant , and small molecule overlapping reads (SMOR) analysis for the detection of heteroresistance.

View Article and Find Full Text PDF

Enhanced bacteriostatic effects of phage vB_C4 and cell wall-targeting antibiotic combinations against drug-resistant .

Microbiol Spectr

January 2025

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting , was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

NKTCL is a highly aggressive malignant tumor, especially prevalent in the southern regions of China. Although chemotherapy regimens based on ADM have achieved certain therapeutic effects in early treatment, the issue of ADM resistance severely limits the therapeutic efficacy and makes it difficult to improve patient survival rates. Our research results indicate that the expression level of APOC1 is closely related to the sensitivity of NKTCL cells to ADM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!