Description and molecular analysis of sp. n. from China (Dorylaimida, Tylencholaimidea).

Zookeys

Lab of Plant Nematology/Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology /Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.

Published: October 2018

A new species, , extracted from the rhizosphere soil of unidentified grasses from Helan Mountain, Inner Mongolia, China was identified. The new species is characterized by having a body length of 0.93-1.07 mm with the lip region approximately one-quarter of the body diameter at the posterior end of the neck region wide; female didelphic-amphidelphic; pars proximalis vaginae violin-shaped. Males were not found. SEM observations of the new species were made and a phylogenetic analysis of both the 18S rDNA and the D2-D3 region of 28S rDNA is presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207633PMC
http://dx.doi.org/10.3897/zookeys.792.27255DOI Listing

Publication Analysis

Top Keywords

description molecular
4
molecular analysis
4
analysis china
4
china dorylaimida
4
dorylaimida tylencholaimidea
4
tylencholaimidea species
4
species extracted
4
extracted rhizosphere
4
rhizosphere soil
4
soil unidentified
4

Similar Publications

Multiple sclerosis and infection: history, EBV, and the search for mechanism.

Microbiol Mol Biol Rev

January 2025

Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA.

SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression.

View Article and Find Full Text PDF

Triplet-triplet energy transfer (TEnT) is of particular interest in various photochemical, photobiological, and energy science processes. It involves the exchange of spin and energy of electrons between two molecular fragments. Here, quasi-diabatic self-consistent field solutions were used to obtain the diabatic states involved in TEnT.

View Article and Find Full Text PDF

Ion atmospheres play a critical role in modulating the interactions between charged components in solutions. However, a detailed description of the nature of ion atmospheres remains elusive. Here, we use Kirkwood-Buff theory, an exact theory of solution mixtures, together with a series of local and bulk electroneutrality constraints to provide relationships between all the net ion-ion distributions in bulk electrolyte mixtures.

View Article and Find Full Text PDF

A case for broadening our view of mechanism in developmental biology.

Development

January 2025

Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.

Developmental biologists can perform studies that describe a phenomenon (descriptive work) and/or explain how the phenomenon works (mechanistic work). There is a prevalent perception that molecular/genetic explanations achieved via perturbations of gene function are the primary means of advancing mechanistic knowledge. We believe this to be a limited perspective, one that does not effectively represent the breadth of work in our field.

View Article and Find Full Text PDF

Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!