Immune checkpoint blockade has achieved significant therapeutic success for a subset of cancer patients; however, a large portion of cancer patients do not respond. Unresponsive tumors are characterized as being immunologically "cold," indicating that these tumors lack tumor antigen-specific primed cytotoxic T cells. Sitravatinib is a spectrum-selective tyrosine kinase inhibitor targeting TAM (TYRO3, AXL, MerTK) and split tyrosine-kinase domain-containing receptors (VEGFR and PDGFR families and KIT) plus RET and MET, targets that contribute to the immunosuppressive tumor microenvironment. We report that sitravatinib has potent antitumor activity by targeting the tumor microenvironment, resulting in innate and adaptive immune cell changes that augment immune checkpoint blockade. These results suggest that sitravatinib has the potential to combat resistance to immune checkpoint blockade and expand the number of cancer patients that are responsive to immune therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238734PMC
http://dx.doi.org/10.1172/jci.insight.124184DOI Listing

Publication Analysis

Top Keywords

immune checkpoint
16
checkpoint blockade
16
cancer patients
12
tumor microenvironment
8
immune
6
sitravatinib
4
sitravatinib potentiates
4
potentiates immune
4
checkpoint
4
blockade
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!