Iron is an essential element for plants as well as other organisms, functioning in various cellular processes, including respiration, chlorophyll biosynthesis, and photosynthesis. Plants take up iron from soil in which iron solubility is extremely low especially under aerobic conditions at high-pH range. Therefore, plants have evolved efficient iron-uptake mechanisms. Because iron is prone to being precipitated and excess ionic iron is cytotoxic, plants also have sophisticated internal iron-transport mechanisms. These transport mechanisms comprise iron chelators including nicotianamine, mugineic acid family phytosiderophores and citrate, and various types of transporters of these chelators, iron-chelate complexes, or free iron ions. To maintain iron homeostasis, plants have developed mechanisms for regulating gene expression in response to iron availability. Expression of various genes involved in iron uptake and translocation is induced under iron deficiency by transcription factor networks and is negatively regulated by the ubiquitin ligase HRZ/BTS. This response is deduced to be mediated by cellular iron sensing as well as long-distance iron signaling. The ubiquitin ligase HRZ/BTS is a candidate intracellular iron sensor because it binds to iron and zinc, and its activity is affected by iron availability. The iron-excess response of plants is thought to be partially independent of the iron-deficiency response. In this review, we summarize and discuss extant knowledge of plant iron transport and its regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.439 | DOI Listing |
Alzheimers Res Ther
January 2025
Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
Background: Quantitative susceptibility mapping (QSM) can study the susceptibility values of brain tissue which allows for noninvasive examination of local brain iron levels in both normal and pathological conditions.
Purpose: Our study compares brain iron deposition in gray matter (GM) nuclei between cerebral small vessel disease (CSVD) patients and healthy controls (HCs), exploring factors that affect iron deposition and cognitive function.
Materials And Methods: A total of 321 subjects were enrolled in this study.
BMC Pregnancy Childbirth
January 2025
School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
Background: Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder associated with pregnancy and is usually diagnosed based on high serum bile acid. However, the pathogenesis of ICP is unclear. Ferroptosis has been reported as an iron-dependent mechanism of cell death.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.
View Article and Find Full Text PDFSci Rep
January 2025
Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).
View Article and Find Full Text PDFNat Rev Dis Primers
January 2025
European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HHT Rare Disease Working Group, Paris, France.
Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait and caused by loss-of-function pathogenic variants in genes encoding proteins of the BMP signalling pathway. Up to 90% of disease-causal variants are observed in ENG and ACVRL1, with SMAD4 and GDF2 less frequently responsible for HHT. In adults, the most frequent HHT manifestations relate to iron deficiency and anaemia owing to recurrent epistaxis (nosebleeds) or bleeding from gastrointestinal telangiectases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!